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THE AUTHOR'S PREFACE

INCE the ancients (as we are told by Pappus), made great account of the science of mechanics in the

investigation of natural things : and the moderns, laying aside substantial forms and occult qualities,

have endeavoured to subject the phenomena of nature to the laws of mathematics, I have in this
treatise cultivated mathematics so far as it regards philosophy. The ancients considered mechanics in a
twofold respect ; as rational, which proceeds accurately by demonstration ; and practical. To practical
mechanics all the manual arts belong, from which mechanics took its name. But as artificers do not work
with perfect accuracy, it comesto pass that mechanics is so distinguished from geometry, that what is
perfectly accurate is called geometrical , what is less so, is called mechanical. But the errors are not in the art,
but in the artificers. He that works with less accuracy is an imperfect mechanic ; and if any could work with
perfect accuracy, he would be the most perfect mechanic of all ; for the description if right lines and circles,
upon which geometry is founded, belongs to mechanics. Geometry does not teach us to draw these lines, but
requires them to be drawn ; for it requires that the learner should first be taught to describe these accurately,
before he enters upon geometry ; then it shows how by these operations problems may be solved. To
describe right lines and circles are problems, but not geometrical problems. The solution of these problems
is required from mechanics ; and by geometry the use of them, when so solved, is shown ; and it is the glory

2/296



of geometry that from those few principles, brought from without, it is able to produce so many things.
Therefore geometry is founded in mechanical practice, and is nothing but that part of universal mechanics
which accurately proposes and demonstrates the art of measuring. But since the manual arts are chiefly
conversant in the moving of bodies, it comes topass that geometry is commonly referred to their
magnitudes, and mechanics to their motion. In this sense rational mechanics will be the science of motions
resulting from any forces whatsoever, and of the forces required to produce any motions, accurately
proposed and demonstrated. This part of mechanics was cultivated by the ancients in the five powers which
relate to manual arts, who considered gravity (it not being a manual power), ho Otherwise than as it moved
weights by those powers. Our design not respecting arts, but philosophy, and our subject not manual but
natural powers, we consider chiefly those things which relate to gravity, levity, elastic force, the resistance of
fluids, and the like forces, whether attractive or impulsive ; and therefore we offer this work as the
mathematical principles of philosophy ; for all the difficulty of philosophy seems to consist in this from the
phenomena of motions to investigate the forces of nature, and then from these forces to demonstrate the
other phenomena ; and to this end the general propositions in the first and second book are directed. In the
third book we give an example of this in the explication of the System of the World : for by the propositions
mathematically demonstrated in the former books, we in the third derive from the celestial phenomena the
forces of gravity with which bodies tend to the sun and the several planets. Then from these forces, by other
propositions which are also mathematical, we deduce the motions of the planets, the comets, the moon, and
the sea. I wish we could derive the rest of the phenomena of nature by the same kind of reasoning from
mechanical principles; for I am induced by many reasons to suspect that they may all depend upon certain
forces by which the particles of bodies, by some causes hitherto unknown, are either mutually impelled
towards each other, and cohere in regular figures, or are repelled and recede from each other; which forces
being unknown, philosophers have hitherto at tempted the search of nature in vain ; but I hope the
principles here laid down will afford some light either to this or some truer method of philosophy. In the
publication of this work the most acute and universally learned Mr. Edmund Halley not only assisted me
with his pains in correcting the press and taking care of the schemes, but it was to his solicitations that its
becoming public is owing ; for when he had obtained of me my demonstrations of the figure of the celestial
orbits, he continually pressed me to communicate the same to the Royal Society, who afterwards, by their
kind encouragement and entreaties, engaged me to think of publishing them. But after I had begun to
consider the inequalities of the lunar motions, and had entered upon some other things relating to the laws
and measures of gravity, and other forces ; and the figures that would be described by bodies attracted
according to given laws ; and the motion of several bodies moving among themselves; the motion of bodies
in resisting mediums; the forces, densities, and motions, of mediums ; the orbits of the comets, and such like
; deferred that publication till I had made a search into those matters, and could put forth the whole
together. What relates to the lunar motions (being imperfect), I have put all together in the corollaries of
Prop. 66, to avoid being obliged to propose and distinctly demonstrate the several things there contained in
a method more prolix than the subject deserved, and interrupt the series of the several propositions. Some
things, found out after the rest, I chose to insert in places less suitable, rather than change the number of the
propositions and the citations. I heartily beg that what I have here done may be read with candour; and that
the defects in a subject so difficult be not so much reprehended as kindly supplied, and investigated by new
endeavours of my readers.

Isaac Newton.

Cambridge, Trinity College May 8, 1688.

In the second edition the second section of the first book was enlarged. In the seventh section of the
second book the theory of the resistances of fluids was more accurately investigated, and confirmed by new
experiments. In the third book the moon's theory and the praecession of the equinoxes were more fully
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deduced from their principles ; and the theory of the comets was confirmed by more examples of the
calculation of their orbits, done also with greater accuracy.

In this third edition the resistance of mediums is somewhat more largely handled than before; and new
experiments of the resistance of heavy bodies falling in air are added. In the third book, the argument to
prove that the moon is retained in its orbit by the force of gravity is enlarged on ; and there are added new
observations of Mr. Pound's of the proportion of the diameters of Jupiter to each other : there are, besides,
added Mr. Kirk's observations of the comet in 1680 ; the orbit of that comet computed in an ellipsis by Dr.
Halley ; and the orbit of the comet in 1723 computed by Mr. Bradley.

(4
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The Mathematical Principles of Natural Philosophy

by Isaac Newton

CHAPTER 1

DEFINITIONS.

Definition i.

The quantity of matter is the measure of the same, arising from its density and bulk conjunctly.

THUS air of a double density, in a double space, is quadruple in quantity ; in a triple space, sextuple in
quantity. The same thing is to be understood of snow, and fine dust or powders, that are condensed by
compression or liquefaction and of all bodies that are by any causes whatever differently condensed. I have
no regard in this place to a medium, if any such there is, that freely pervades the interstices between the
parts of bodies. It is this quantity that I mean hereafter everywhere under the name of body or mass. And the
same is known by the weight of each body ; for it is proportional to the weight, as I have found by
experiments on pendulums, very accurately made, which shall be shewn hereafter.

Definition ii.

The quantity of motion is the measure of the same, arising from the velocity and quantity of matter
conjunctly.

The motion of the whole is the sum of the motions of all the parts; and therefore in a body double in
quantity, with equal velocity, the motion is double ; with twice the velocity, it is quadruple,

Definition iii.

The vis insita, or innate force of matter, is a power of resisting, by which every body, as much as in it lies,
endeavours to persevere in its present stale, whether it be of rest, or of moving uniformly forward in a
right line.

This force is ever proportional to the body whose force it is ; and differs nothing from the inactivity of the
mass, but in our manner of conceiving it. A body, from the inactivity of matter, is not without difficulty put
out of its state of rest or motion. Upon which account, this vis insita, may, by a most significant name, be
called vis inertia, or force of inactivity. But a body exerts this force only, when another force, impressed upon
it, endeavours to change its condition ; and the exercise of this force may be considered both as resistance
and impulse ; it is resistance, in so far as the body, for maintaining its present state, withstands the force
impressed; it is impulse, in so far as the body, by not easily giving way to the impressed force of another,
endeavours to change the state of that other. Resistance is usually ascribed to bodies at rest, and impulse to
those in motion; but motion and rest, as commonly conceived, are only relatively distinguished ; nor are
those bodies always truly at rest, which commonly are taken to be so.
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Definition iv.

An impressed force is an action exerted upon a body, in order to change its state, either of rest, or of
moving uniformly forward in a right line.

This force consists in the action only; and remains no longer in the body, when the action is over. For a
body maintains every new state it acquires, by its vis inertiae only. Impressed forces are of different origins
as from percussion, from pressure, from centripetal force.

Definition v.

A centripetal force is that by which bodies are drawn or impelled, or any way tend, towards a point as to a
centre.

Of this sort is gravity, by which bodies tend to the centre of the earth magnetism, by which iron tends to
the loadstone ; and that force, what ever it is, by which the planets are perpetually drawn aside from the
rectilinear motions, which otherwise they would pursue, and made to revolve in curvilinear orbits. A stone,
whirled about in a sling, endeavours to recede from the hand that turns it ; and by that endeavour, distends
the sling, and that with so much the greater force, as it is revolved with the greater velocity, and as soon as
ever it is let go, flies away. That force which opposes itself to this endeavour, and by which the sling
perpetually draws back the stone towards the hand, and retains it in its orbit, because it is directed to the
hand as the centre of the orbit, I call the centripetal force. And the same thing is to be understood of all
bodies, revolved in any orbits. They all endeavour to recede from the centres of their orbits ; and wore it not
for the opposition of a contrary force which restrains them to, and detains them in their orbits, which I
therefore call centripetal, would fly off in right lines, with an uniform motion. A projectile, if it was not for
the force of gravity, would not deviate towards the earth, but would go off from it in a right line, and that
with an uniform motion, if the resistance of the air was taken away. It is by its gravity that it is drawn aside
perpetually from its rectilinear course, and made to deviate towards the earth, more or less, according to the
force of its gravity, and the velocity of its motion. The less its gravity is, for the quantity of its matter, or the
greater the velocity with which it is projected, the less will it deviate from a rectilinear course, and the farther
it will go. If a leaden ball projected from the top of a mountain by the force of gunpowder with a given
velocity, and in a direction parallel to the horizon, is carried in a curve line to the distance of two miles
before it falls to the ground ; the same, if the resistance of the air were taken away, with a double or decuple
velocity, would fly twice or ten times as far. And by increasing the velocity, we may at pleasure increase the
distance to which it might be projected, and diminish the curvature of the line, which it might describe, till at
last it should fall at the distance of 10, 30, or 9o degrees, or even might go quite round the whole earth
before it falls ; or lastly, so that it might never fall to the earth, but go forward into the celestial spaces, and
proceed in its motion in infinitum. And after the same manner that a projectile, by the force of gravity, may
be made to revolve in an orbit, and go round the whole earth, the moon also, either by the force of gravity, if
it is endued with gravity, or by any other force, that impels it towards the earth, may be perpetually drawn
aside towards the earth, out of the rectilinear way, which by its innate force it would pursue; and would be
made to revolve in the orbit which it now describes ; nor could the moon with out some such force, be
retained in its orbit. If this force was too small, it would not sufficiently turn the moon out of a rectilinear
course : if it was too great, it would turn it too much, and draw down the moon from its orbit towards the
earth. It is necessary, that the force be of a just quantity, and it belongs to the mathematicians to find the
force, that may serve exactly to retain a body in a given orbit, with a given velocity ; and vice versa, to
determine the curvilinear way, into which a body projected from a given place, with a given velocity, may be
made to deviate from its natural rectilinear way, by means of a given force.

6/296



The quantity of any centripetal force may be considered as of three kinds; absolute, accelerative, and
motive.

Definition vi.

The absolute quantity of a centripetal force is the measure of the same proportional to the efficacy of the
cause that propagates it from the centre, through the spaces round about.

Thus the magnetic force is greater in one load-stone and less in another according to their sizes and
strength of intensity.

Definition vii.

The accelerative quantity of a centripetal force is the measure, of the same, proportional to the velocity
which it generates in a given time.

Thus the force of the same load-stone is greater at a less distance, and less at a greater : also the force of
gravity is greater in valleys, less on tops of exceeding high mountains ; and yet less (as shall hereafter be
shown), at greater distances from the body of the earth ; but at equal distances, it is the same everywhere ;
because (taking away, or allowing for, the resistance of the air), it equally accelerates all falling bodies,
whether heavy or light, great or small.

Definition viii.

The motive quantity of a centripetal force, is the measure of the same proportional to the motion which it
generates in a given time.

Thus the weight is greater in a greater body, less in a less body ; and in the same body, it is greater near to
the earth, and less at remoter distances. This sort of quantity is the centripetency, or propension of the whole
body towards the centre, or, as I may say, its weight ; and it is always known by the quantity of an equal and
contrary force just sufficient to hinder the descent of the body.

These quantities of forces, we may, for brevity's sake, call by the names of motive, accelerative, and
absolute forces ; and, for distinction's sake, con sider them, with respect to the bodies that tend to the centre
; to the places of those bodies ; and to the centre of force towards which they tend ; that is to say, I refer the
motive force to the body as an endeavour and propensity of the whole towards a centre, arising from the
propensities of the several parts taken together ; the accelerative force to the place of the body, as a certain
power or energy diffused from the centre to all places around to move the bodies that are in them : and the
absolute force to the centre, as endued with some cause, without which those motive forces would not be
propagated through the spaces round about ; whether that cause be some central body (such as is the load-
stone, in the centre of the magnetic force, or the earth in the centre of the gravitating force), or anything else
that does not yet appear. For I here design only to give a mathematical notion of those forces, without
considering their physical causes and seats.

Wherefore the accelerative force will stand in the same relation to the motive, as celerity does to motion.
For the quantity of motion arises from the celerity drawn into the quantity of matter : and the motive force
arises from the accelerative force drawn into the same quantity of matter. For the sum of the actions of the
accelerative force, upon the several ; articles of the body, is the motive force of the whole. Hence it is, that
near the surface of the earth, where the accelerative gravity, or force productive of gravity, in all bodies is the
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same, the motive gravity or the weight is as the body : but if we should ascend to higher regions, where the
accelerative gravity is less, the weight would be equally diminished, and would always be as the product of
the body, by the accelerative gravity. So in those regions, where the accelerative gravity is diminished into
one half, the weight of a body two or three times less, will be four or six times less.

I likewise call attractions and impulses, in the same sense, accelerative, and motive ; and use the words
attraction, impulse or propensity of any sort towards a centre, promiscuously, and indifferently, one for
another ; considering those forces not physically, but mathematically : wherefore, the reader is not to
imagine, that by those words, I anywhere take upon me to define the kind, or the manner of any action, the
causes or the physical reason thereof, or that I attribute forces, in a true and physical sense, to certain
centres (which are only mathematical points) ; when at any time I happen to speak of centres as attracting,
or as endued with attractive powers.

Scholium.

Hitherto I have laid down the definitions of such words as are less known, and explained the sense in
which I would have them to be under stood in the following discourse. I do not define time, space, place and
motion, as being well known to all. Only I must observe, that the vulgar conceive those quantities under no
other notions but from the relation they bear to sensible objects. And thence arise certain prejudices, for the
removing of which, it will be convenient to distinguish them into absolute and relative, true and apparent,
mathematical and common.

I. Absolute, true, and mathematical time, of itself, and from its own nature flows equably without regard
to anything external, and by another name is called duration : relative, apparent, and common time, is some
sensible and external (whether accurate or unequable) measure of duration by the means of motion, which is
commonly used instead of true time ; such as an hour, a day, a month, a year.

II. Absolute space, in its own nature, without regard to anything external, remains always similar and
immovable. Relative space is some movable dimension or measure of the absolute spaces ; which our senses
determine by its position to bodies ; and which is vulgarly taken for immovable space ; such is the dimension
of a subterraneous, an aereal, or celestial space, determined by its position in respect of the earth. Absolute
and relative space, are the same in figure and magnitude ; but they do not remain always numerically the
same. For if the earth, for instance, moves, a space of our air, which relatively and in respect of the earth
remains always the same, will at one time be one part of the absolute space into which the air passes ; at
another time it will be another part of the same, and so, absolutely understood, it will be perpetually
mutable.

III. Place is a part of space which a body takes up, and is according to the space, either absolute or relative.
I say, a part of space ; not the situation, nor the external surface of the body. For the places of equal solids
are always equal ; but their superfices, by reason of their dissimilar figures, are often unequal. Positions
properly have no quantity, nor are they so much the places themselves, as the properties of places. The
motion of the whole is the same thing with the sum of the motions of the parts ; that is, the translation of the
whole, out of its place, is the same thing with the sum of the translations of the parts out of their places ; and
therefore the place of the whole is the same thing with the sum of the places of the parts, and for that reason,
it is internal, and in the whole body.

IV. Absolute motion is the translation of a body from one absolute place into another ; and relative
motion, the translation from one relative place into another. Thus in a ship under sail, the relative place of a
body is that part of the ship which the body possesses ; or that part of its cavity which the body fills, and
which therefore moves together with the ship : and relative rest is the continuance of the body in the same
part of the ship, or of its cavity. But real, absolute rest, is the continuance of the body in the same part of that
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immovable space, in which the ship itself, its cavity, and all that it contains, is moved. Wherefore, if the earth
is really at rest, the body, which relatively rests in the ship, will really and absolutely move with the same
velocity which the ship has on the earth. But if the earth also moves, the true and absolute motion of the
body will arise, partly from the true motion of the earth, in immovable space ; partly from the relative
motion of the ship on the earth ; and if the body moves also relatively in the ship ; its true motion will arise,
partly from the true motion of the earth, in immovable space, and partly from the relative motions as well of
the ship on the earth, as of the body in the ship ; and from these relative motions will arise the relative
motion of the body on the earth. As if that part of the earth, where the ship is, was truly moved toward the
east, with a velocity of 10010 parts; while the ship itself, with a fresh gale, and full sails, is carried towards
the west, with a velocity expressed by 10 of those parts ; but a sailor walks in the ship towards the east, with 1
part of the said velocity ; then the sailor will be moved truly in immovable space towards the east, with a
velocity of 10001 parts, and relatively on the earth towards the west, with a velocity of 9 of those parts.

Absolute time, in astronomy, is distinguished from relative, by the equation or correction of the vulgar
time. For the natural days are truly unequal, though they are commonly considered as equal, and used for a
measure of time ; astronomers correct this inequality for their more accurate deducing of the celestial
motions. It may be, that there is no such thing as an equable motion, whereby time may H accurately
measured. All motions may be accelerated and retarded; but the true, or equable, progress of absolute time
is liable to no change. The duration or perseverance of the existence of things remains the same, whether the
motions are swift or slow, or none at all : and therefore it ought to be distinguished from what are only
sensible measures thereof ; and out of which we collect it, by means of the astronomical equation. The
necessity of which equation, for deter mining the times of a phaenomenon, is evinced as well from the
experiments of the pendulum clock, as by eclipses of the satellites of Jupiter.

As the order of the parts of time is immutable, so also is the order of the parts of space. Suppose those
parts to be moved out of their places, and they will be moved (if the expression may be allowed) out of
themselves. For times and spaces are, as it were, the places as well of themselves as of all other things. All
things are placed in time as to order of succession ; and in space as to order of situation. It is from their
essence or nature that they are places ; and that the primary places of things should be moveable, is absurd.
These are therefore the absolute places ; and translations out of those places, are the only absolute motions.

But because the parts of space cannot be seen, or distinguished from one another by our senses, therefore
in their stead we use sensible measures of them. For from the positions and distances of things from any
body considered as immovable, we define all places ; and then with respect to such places, we estimate all
motions, considering bodies as transferred from some of those places into others. And so, instead of absolute
places and motions, we use relative ones; and that without any inconvenience in common affairs ; but in
philosophical disquisitions, we ought to abstract from our senses, and consider things themselves, distinct
from what are only sensible measures of them. For it may be that there is no body really at rest, to which the
places and motions of others may be referred.

But we may distinguish rest and motion, absolute and relative, one from the other by their properties,
causes and effects. It is a property of rest, that bodies really at rest do rest in respect to one another. And
therefore as it is possible, that in the remote regions of the fixed stars, or perhaps far beyond them, there
may be some body absolutely at rest ; but impossible to know, from the position of bodies to one another in
our regions whether any of these do keep the same position to that remote body; it follows that absolute rest
cannot be determined from the position of bodies in our regions.

It is a property of motion, that the parts, which retain given positions to their wholes, do partake of the
motions of those wholes. For all the parts of revolving bodies endeavour to recede from the axis of motion ;
and the impetus of bodies moving forward, arises from the joint impetus of all the parts. Therefore, if
surrounding bodies are moved, those that are relatively at rest within them, will partake of their motion.
Upon which account, the true and absolute motion of a body cannot be determined by the translation of it
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from those which only seem to rest ; for the external bodies ought not only to appear at rest, but to be really
at rest. For otherwise, all included bodies, beside their translation from near the surrounding ones, partake
likewise of their true motions ; and though that translation were not made they would not be really at rest,
but only seem to be so. For the surrounding bodies stand in the like relation to the surrounded asthe
exterior part of a whole does to the interior, or as the shell does to the kernel ; but, if the shell moves, the
kernel will also move, as being part of the whole, without any removal from near the shell.

A property, near akin to the preceding, is this, that if a place is moved, whatever is placed therein moves
along with it ; and therefore a body, which is moved from a place in motion, partakes also of the motion of its
place. Upon which account, all motions, from places in motion, are no other than parts of entire and
absolute motions ; and every entire motion is composed of the motion of the body out of its first place, and
the motion of this place out of its place ; and so on, until we come to some immovable place, as in the before-
mentioned example of the sailor. Where fore, entire and absolute motions can be no otherwise determined
than by immovable places : and for that reason I did before refer those absolute motions to immovable
places, but relative ones to movable places. Now no other places are immovable but those that, from infinity
to infinity, do all retain the same given position one to another ; and upon this account must ever remain
unmoved ; and do thereby constitute immovable space.

The causes by which true and relative motions are distinguished, one from the other, are the forces
impressed upon bodies to generate motion. True motion is neither generated nor altered, but by some force
impressed upon the body moved : but relative motion may be generated or altered without any force
impressed upon the body. For it is sufficient only to impress some force on other bodies with which the
former is compared, that by their giving way, that relation may be changed, in which the relative rest or
motion of this other body did consist. Again, true motion suffers always some change from any force
impressed upon the moving body ; but relative motion docs not necessarily undergo any change by such
forces. For if the same forces are likewise impressed on those other bodies, with which the comparison is
made, that the relative position may be pre served, then that condition will be preserved in which the relative
motion consists. And therefore any relative motion may be changed when the true motion remains
unaltered, and the relative may be preserved when the true suffers some change. Upon which accounts; true
motion does by no means consist in such relations.

The effects which distinguish absolute from relative motion arc, the forces of receding from the axis of
circular motion. For there are no such forces in a circular motion purely relative, but in a true and absolute
circular motion., they are greater or less, according t the quantity of the motion. If a vessel, hung: by a long
cord, is so often turned about that the cord is strongly twisted, then filled with water, and held at rest
together with the water ; after, by the sudden action of another force, it is whirled about the contrary way,
and while the cord is untwisting itself, the vessel continues for some time in this motion ; the surface of the
water will at first be plain, as before the vessel began to move : but the vessel; by gradually communicating
its motion to the water, will make it begin sensibly to revolve, and recede by little and little from the middle,
and ascend to the sides of the vessel, forming itself into a concave figure (as I have experienced), and the
swifter the motion becomes, the higher will the water rise, till at last, performing its revolutions in the same
times with the vessel, it becomes relatively at rest in it. This ascent of the water shows its endeavour to
recede from the axis of its motion ; and the true and absolute circular motion of the water, which is here
directly contrary to the relative, discovers itself, and may be measured by this endeavour. At first, when the
relative motion of the water in the vessel was greatest, it produced no endeavour to recede from the axis ; the
water showed no tendency to the circumference, nor any ascent towards the sides of the vessel, but remained
of a plain surface, and therefore its true circular motion had not yet begun. But afterwards, when the relative
motion of the water had decreased, the ascent thereof towards the sides of the vessel proved its endeavour to
recede from the axis ; and this endeavour showed the real circular motion of the water perpetually
increasing, till it had acquired its greatest quantity, when the water rested relatively in the vessel. And
therefore this endeavour does not depend upon any translation of the water in respect of the ambient bodies,
nor can true circular motion be defined by such translation. There is only one real circular motion of any one
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revolving body, corresponding to only one power of endeavouring to recede from its axis of motion, as its
proper and adequate effect ; but relative motions, in one and the same body, are innumerable, according to
the various relations it bears to external bodies, and like other relations, are altogether destitute of any real
effect, any otherwise than they may perhaps partake of that one only true motion. And therefore in their
system who suppose that our heavens, revolving below the sphere of the fixed stars, carry the planets along
with them ; the several parts of those heavens, and the planets, which are indeed relatively at rest in their
heavens, do yet really move. For they change their position one to another (which never happens to bodies
truly at rest), and being carried together with their heavens, partake of their motions, and as parts of
revolving wholes, endeavour to recede from the axis of their motions.

Wherefore relative quantities are not the quantities themselves, whose names they bear, but those sensible
measures of them (either accurate or inaccurate), which are commonly used instead of the measured
quantities themselves. And if the meaning of words is to he determined by their use, then by the names time,
space, place and motion, their measures are properly to be understood ; and the expression will be unusual,
and purely mathematical, if the measured quantities themselves are meant. Upon which account, they do
strain the sacred writings, who there interpret those words for the measured quantities. Nor do those less
defile the purity of mathematical and philosophical truths, who confound real quantities themselves with
their relations and vulgar measures.

It is indeed a matter of great difficulty to discover, and effectually to distinguish, the true motions of
particular bodies from the apparent ; be cause the parts of that immovable space, in which those motions are
performed, do by no means come under the observation of our senses. Yet the thing is not altogether
desperate : for we have some arguments to guide us, partly from the apparent motions, which are the
differences of the true motions ; partly from the forces, which are the causes and effects of the true motions.
For instance, if two globes, kept at a given distance one from the other by means of a cord that connects
them, were revolved about their common centre of gravity, we might, from the tension of the cord, discover
the endeavour of the globes to recede from the axis of their motion, and from thence we might compute the
quantity of their circular motions. And then if any equal forces should be impressed at once on the alternate
faces of the globes to augment or diminish their circular motions, from the increase or decrease of the
tension of the cord, we might infer the increment or decrement of their motions : and thence would be found
on what faces those forces ought to be impressed, that the motions of the globes might be most augmented ;
that is, we might discover their hinder-most faces, or those which, in the circular motion, do follow. But the
faces which follow being known, and consequently the opposite ones that precede, we should likewise know
the determination of their motions. And thus we might find both the quantity and the determination of this
circular motion, even in an immense vacuum, where there was nothing external or sensible with which the
globes could be compared. But now, if in that space some remote bodies were placed that kept always a given
position one to another, as the fixed stars do in our regions, we could not indeed determine from the relative
translation of the globes among those bodies, whether the motion did belong to the globes or to the bodies.
But if we observed the cord, and found that its tension was that very tension which the motions of the globes
required, we might conclude the motion to be in the globes, and the bodies to be at rest ; and then, lastly,
from the translation of the globes among the bodies, we should find the determination of their motions. But
how we are to collect the true motions from their causes, effects, and apparent differences ; and, vice versa,
how from the motions, either true or apparent, we may come to the knowledge of their causes and effects,
shall be explained more at large in the following tract. For to this end it was that I composed it.

(4
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The Mathematical Principles of Natural Philosophy

by Isaac Newton

CHAPTER 2

Axioms, OrR LAws oF MOTION.

Law 1.

Every body perseveres in its state of rest, or of uniform motion in a right line, unless it is compelled to
change that state by forces impressed thereon.

Projectiles persevere in their motions, so far as they are not retarded by the resistance of the air, or
impelled downwards by the force of gravity. A top, whose parts by their cohesion are perpetually drawn aside
from rectilinear motions, does not cease its rotation, otherwise than as it is retarded by the air. The greater
bodies of the planets and comets, meeting with less resistance in more free spaces, preserve their motions
both progressive and circular for a much longer time.

Law ii.

The alteration of motion is ever proportional to the motive force impressed; and is made in the direction of
the right line in which that force is impressed.

If any force generates a motion, a double force will generate double the motion, a triple force triple the
motion, whether that force be impressed altogether and at once, or gradually and successively. And this
motion (being always directed the same way with the generating force), if the body moved before, is added to
or subducted from the former motion, according as they directly conspire with or are directly contrary to
each other; or obliquely joined, when they are oblique, so as to produce a new motion compounded from the
determination of both.

Law iii.

To every action there is always opposed an equal reaction: or the mutual actions of two bodies upon each
other are always equal, and directed to contrary parts.

Whatever draws or presses another is as much drawn or pressed by that other. If you press a stone with
your finger, the finger is also pressed by the stone. If a horse draws a stone tied to a rope, the horse (if I may
so say) will be equally drawn back towards the stone: for the distended rope, by the same endeavour to relax
or unbend itself, will draw the horse as much towards the stone, as it does the stone towards the horse, and
will obstruct the progress of the one as much as it advances that of the other. If a body impinge upon
another, and by its force change the motion of the other, that body also (because of the equality of the
mutual pressure) will undergo an equal change, in its own motion, towards the contrary part. The changes
made by these actions are equal, not in the velocities but in the motions of bodies; that is to say, if the bodies
are not hindered by any other impediments. For, because the motions are equally changed, the changes of
the velocities made towards contrary parts are reciprocally proportional to the bodies. This law takes place
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also in attractions, as will be proved in the next scholium.

Corollary I.

A body by two forces conjoined will describe the diagonal of a parallelogram, in the same time that it
would describe the sides, by those forces apart.

If a body in a given time, by the force M impressed apart in the place A, should
with an uniform motion be carried from A to B; and by the force N impressed apart
in the same place, should be carried from A to C; complete the parallelogram ABCD,
and, by both forces acting together, it will in the same time be carried in the diagonal
from A to D. For since the force N acts in the direction of the line AC, parallel to BD, ° 4
this force (by the second law) will not at all alter the velocity generated by the other force M, by which the
body is carried towards the line BD. The body therefore will arrive at the line BD in the same time, whether

the force N be impressed or not; and therefore at the end of that time it will be found somewhere in the line
BD. By the same argument, at the end of the same time it will be found somewhere in the line CD. Therefore
it will be found in the point D, where both lines meet. But it will move in a right line from A to D, by Law L.

Corollary ii.

And hence is explained the composition of any one direct force AD, out of any two oblique forces AC and
CD; and, on the contrary, the resolution of any one direct force AD into two oblique forces AC and CD:
which composition and resolution are abundantly confirmed from mechanics.

As if the unequal radii OM and ON drawn from the centre O of any wheel, should sustain the weights A
and P by the cords MA and NP; and the forces of those weights to move the wheel were required. Through
the centre O draw the right line KOL, meeting the cords perpendicularly in K and L; and from the centre O,
with OL the greater of the distances OK and OL, describe a circle, meeting
the cord MA in D: and drawing OD, make AC parallel and DC

M
perpendicular thereto. Now, it being indifferent whether the points K, L, D, \ \ »
o 3

of the cords be fixed to the plane of the wheel or not, the weights will have

the same effect whether they are suspended from the points K and L, or
from D and L. Let the whole force of the weight A be represented by the Ty
line AD, and let it be resolved into the forces AC and CD; of which the force
AC, drawing the radius OD directly from the centre, will have no effect to Q G

move the wheel: but the other force DC, drawing the radius DO 2 ©
'p

perpendicularly, will have the same effect as if it drew perpendicularly the c
radius OL equal to OD; that is, it will have the same effect as the weight P, A

if that weight is to the weight A as the force DC is to the force DA; that is

(because of the similar triangles ADC, DOK), as OK to OD or OL. Therefore the weights A and P, which are
reciprocally as the radii OK and OL that lie in the same right line, will be equipollent, and so remain in
equilibrio; which is the well known property of the balance, the lever, and the wheel. If either weight is
greater than in this ratio, its force to move the wheel will be so much greater.

If the weight p, equal to the weight P, is partly suspended by the cord Np, partly sustained by the oblique
plane pG; draw pH, NH, the former perpendicular to the horizon, the latter to the plane pG; and if the force
of the weight p tending downwards is represented by the line pH, it may be resolved into the forces pN, HN.
If there was any plane pQ, perpendicular to the cord pN, cutting the other plane pG in a line parallel to the
horizon, and the weight p was supported only by those planes pQ , pG, it would press those planes
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perpendicularly with the forces pN; HN; to wit, the plane pQ with the force pN, and the plane pG with the
force HN. And therefore if the plane pQ was taken away, so that the weight might stretch the cord, because
the cord, now sustaining the weight, supplies the place of the plane that was removed, it will be strained by
the same force pN which pressed upon the plane before. Therefore, the tension of this oblique cord pN will
be to that of the other perpendicular cord PN as pN to pH. And therefore if the weight p is to the weight A in
a ratio compounded of the reciprocal ratio of the least distances of the cords PN, AM, from the centre of the
wheel, and of the direct ratio of pH to pN, the weights will have the same effect towards moving the wheel,
and will therefore sustain each other; as any one may find by experiment.

But the weight p pressing upon those two oblique planes, may be considered as a wedge between the two
internal surfaces of a body split by it; and hence the forces of the wedge and the mallet may be determined;
for because the force with which the weight p presses the plane pQ isto the force with which the same,
whether by its own gravity, or by the blow of a mallet, is impelled in the direction of the line pH towards
both the planes, as pN to pH; and to the force with which it presses the other plane pG, as pN to NH. And
thus the force of the screw may be deduced from a like resolution of forces; it being no other than a wedge
impelled with the force of a lever. Therefore the use of this Corollary spreads far and wide, and by that
diffusive extent the truth thereof is farther confirmed. For on what has been said depends the whole doctrine
of mechanics variously demonstrated by different authors. For from hence are easily deduced the forces of
machines, which are compounded of wheels, pullies, levers, cords, and weights, ascending directly or
obliquely, and other mechanical powers; as also the force of the tendons to move the bones of animals.

Corollary iii.

The quantity of motion, which is collected by taking the sum of the motions directed towards the same
parts, and the difference of those that are directed to contrary parts, suffers no change from the action of
bodies among themselves.

For action and its opposite re-action are equal, by Law III, and therefore, by Law II, they produce in the
motions equal changes towards opposite parts. Therefore if the motions are directed towards the same parts,
whatever is added to the motion of the preceding body will be subducted from the motion of that which
follows; so that the sum will be the same as before. If the bodies meet, with contrary motions, there will be
an equal deduction from the motions of both; and therefore the difference of the motions directed towards
opposite parts will remain the same.

Thus if a spherical body A with two parts of velocity is triple of a spherical body B which follows in the
same right line with ten parts of velocity, the motion of A will be to that of B as 6 to 10. Suppose, then, their
motions to be of 6 parts and of 10 parts, and the sum will be 16 parts. Therefore, upon the meeting of the
bodies, if A acquire 3, 4, or 5 parts of motion, B will lose as many; and therefore after reflexion A will
proceed with 9, 10, or 11 parts, and B with 7, 6, or 5 parts; the sum remaining always of 16 parts as before. If
the body A acquire 9, 10, 11, or 12 parts of motion, and therefore after meeting proceed with 15, 16, 17, or 18
parts, the body B, losing so many parts as A has got, will either proceed with 1 part, having lost 9, or stop and
remain at rest, as having lost its whole progressive motion of 10 parts; or it will go back with 1 part, having
not only lost its whole motion, but (if I may so say) one part more; or it will go back with 2 parts, because a
progressive motion of 12 parts is taken off. And so the sums of the conspiring motions 15+1, or 16+0, and the
differences of the contrary motions 17—1 and 18-2, will always be equal to 16 parts, as they were before the
meeting and reflexion of the bodies. But, the motions being known with which the bodies proceed after
reflexion, the velocity of either will be also known, by taking the velocity after to the velocity before reflexion,
as the motion after is to the motion before. As in the last case, where the motion of the body A was of 6 parts
before reflexion and of 18 parts after, and the velocity was of 2 parts before reflexion, the velocity thereof
after reflexion will be found to be of 6 parts; by saying, as the 6 parts of motion before to 18 parts after, so
are 2 parts of velocity before reflexion to 6 parts after.
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But if the bodies are either not spherical, or, moving in different right lines, impinge obliquely one upon
the other, and their motions after reflexion are required, in those cases we are first to determine the position
of the plane that touches the concurring bodies in the point of concourse, then the motion of each body (by
Corol. II) is to be resolved into two, one perpendicular to that plane, and the other parallel to it. This done,
because the bodies act upon each other in the direction of a line perpendicular to this plane, the parallel
motions are to be retained the same after reflexion as before; and to the perpendicular motions we are to
assign equal changes towards the contrary parts; in such manner that the sum of the conspiring and the
difference of the contrary motions may remain the same as before. From such kind of reflexions also
sometimes arise the circular motions of bodies about their own centres. But these are cases which I do not
consider in what follows; and it would be too tedious to demonstrate every particular that relates to this
subject.

Corollary iv.

The common centre of gravity of two or more bodies does not alter its state of motion or rest by the actions
of the bodies among themselves; and therefore the common centre of gravity of all bodies acting upon each
other (excluding outward actions and impediments) is either at rest, or moves uniformly in a right line.

For if two points proceed with an uniform motion in right lines, and their distance be divided in a given
ratio, the dividing point will be either at rest, or proceed uniformly in a right line. This is demonstrated
hereafter in Lem. XXIII and its Corol., when the points are moved in the same plane; and by a like way of
arguing, it may be demonstrated when the points are not moved in the same plane. Therefore if any number
of bodies move uniformly in right lines, the common centre of gravity of any two of them is either at rest, or
proceeds uniformly in a right line; because the line which connects the centres of those two bodies so moving
is divided at that common centre in a given ratio. In like manner the common centre of those two and that of
a third body will be either at rest or moving uniformly in a right line because at that centre the distance
between the common centre of the two bodies, and the centre of this last, is divided in a given ratio. In like
manner the common centre of these three, and of a fourth body, is either at rest, or moves uniformly in a
right line; because the distance between the common centre of the three bodies, and the centre of the fourth
is there also divided in a given ratio, and so on in infinitum. Therefore, in a system of bodies where there is
neither any mutual action among themselves, nor any foreign force impressed upon them from without, and
which consequently move uniformly in right lines, the common centre of gravity of them all is either at rest
or moves uniformly forward in a right line.

Moreover, in a system of two bodies mutually acting upon each other, since the distances between their
centres and the common centre of gravity of both arc reciprocally as the bodies, the relative motions of those
bodies, whether of approaching to or of receding from that centre, will be equal among themselves.
Therefore since the changes which happen to motions are equal and directed to contrary parts, the common
centre of those bodies, by their mutual action between themselves, is neither promoted nor retarded, nor
suffers any change as to its state of motion or rest. But in a system of several bodies, because the common
centre of gravity of any two acting mutually upon each other suffers no change in its state by that action: and
much less the common centre of gravity of the others with which that action does not intervene; but the
distance between those two centres is divided by the common centre of gravity of all the bodies into parts
reciprocally proportional to the total sums of those bodies whose centres they are: and therefore while those
two centres retain their state of motion or rest, the common centre of all does also retain its state: it is
manifest that the common centre of all never suffers any change in the state of its motion or rest from the
actions of any two bodies between themselves. But in such a system all the actions of the bodies among
themselves either happen between two bodies, or are composed of actions interchanged between some two
bodies; and therefore they do never produce any alteration in the common centre of all as to its state of
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motion or rest. Wherefore since that centre, when the bodies do not act mutually one upon another, either is
at rest or moves uniformly forward in some right line, it will, notwithstanding the mutual actions of the
bodies among themselves, always persevere in its state, either of rest, or of proceeding uniformly in a right
line, unless it is forced out of this state by the action of some power impressed from without upon the whole
system. And therefore the same law takes place in a system consisting of many bodies as in one single body,
with regard to their persevering in their state of motion or of rest. For the progressive motion, whether of
one single body, or of a whole system of bodies, is always to be estimated from the motion of the centre of
gravity.

Corollary V.

The motions of bodies included in a given space are the same among themselves, whether that space is at
rest, or moves uniformly forwards in a right line without any circular motion.

For the differences of the motions tending towards the same parts, and the sums of those that tend
towards contrary parts, are, at first (by supposition), in both cases the same; and it is from those sums and
differences that the collisions and impulses do arise with which the bodies mutually impinge one upon
another. Wherefore (by Law II), the effects of those collisions will be equal in both cases; and therefore the
mutual motions of the bodies among themselves in the one case will remain equal to the mutual motions of
the bodies among themselves in the other. A clear proof of which we have from the experiment of a ship;
where all motions happen after the same manner, whether the ship is at rest, or is carried uniformly
forwards in a right line.

Corollary vi.

If bodies, any how moved among themselves, are urged in the direction of parallel lines by equal
accelerative forces, they will all continue to move among themselves, after the same, manner as if they had
been urged by no such forces.

For these forces acting equally (with respect to the quantities of the bodies to be moved), and in the
direction of parallel lines, will (by Law II) move all the bodies equally (as to velocity), and therefore will
never produce any change in the positions or motions of the bodies among themselves.

Scholium.

Hitherto I have laid down such principles as have been received by mathematicians, and are confirmed by
abundance of experiments. By the first two Laws and the first two Corollaries, Galileo discovered that the
descent of bodies observed the duplicate ratio of the time, and that the motion of projectiles was in the curve
of a parabola; experience agreeing with both, unless so far as these motions are a little retarded by the
resistance of the air. When a body is falling, the uniform force of its gravity acting equally, impresses, in
equal particles of time, equal forces upon that body, and therefore generates equal velocities; and in the
whole time impresses a whole force, and generates a whole velocity proportional to the time. And the spaces
described in proportional times are as the velocities and the times conjunctly; that is, in a duplicate ratio of
the times. And when a body is thrown upwards, its uniform gravity impresses forces and takes off velocities
proportional to the times; and the times of ascending to the greatest heights are as the velocities to be taken
off, and those heights are as the velocities and the times conjunctly, or in the duplicate ratio of the velocities.
And if a body be projected in any direction, the motion arising from its projection is compounded with the
motion arising from its gravity. As if the body A by its motion of projection alone could describe in a given
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time the right line AB, and with its motion of falling alone could describe in the same time
the altitude AC; complete the paralellogram ABDC, and the body by that compounded
motion will at the end of the time be found in the place D; and the curve line AED, which A
that body describes, will be a parabola, to which the right line AB will be a tangent in A;
and whose ordinate BD will be as the square of the line AB. On the same Laws and
Corollaries depend those things which have been demonstrated concerning the times of
the vibration of pendulums, and are confirmed by the daily experiments of pendulum
clocks. By the same, together with the third Law, Sir Christ. Wren, Dr. Wallis, and Mr. €

Huygens, the greatest geometers of our times, did severally determine the rules of the congress and reflexion

of hard bodies, and much about the same time communicated their discoveries to the Royal Society, exactly
agreeing among themselves as to those rules. Dr. Wallis, indeed, was something more early in the
publication; then followed Sir Christopher Wren, and, lastly, Mr. Huygens. But Sir Christopher Wren
confirmed the truth of the thing before the Royal Society by the experiment of pendulums, which Mr.
Mariotte soon after thought fit to explain in a treatise entirely upon that subject. But to bring this experiment
to an accurate agreement with the theory, we are to have a due regard as well to the resistance of the air as to
the elastic force of the concurring bodies. Let the spherical bodies A, B be suspended by the parallel and
equal strings AC, BD, from the centres C, D. About these centres, with E G cD Il
those intervals, describe the semicircles EAF, GBH, bisected by the radii
CA, DB. Bring the body A to any point R of the arc EAF, and (withdrawing l;

the body B) let it go from thence, and after one oscillation suppose it to

return to the point V: then RV will be the retardation arising from the
resistance of the air. Of this RV let ST be a fourth part, situated in the B

middle, to wit, so as RS and TV may be equal, and RS may be to ST as 3 to 2, then will ST represent very
nearly the retardation during the descent from S to A. Restore the body B to its place: and, supposing the
body A to be let fall from the point S, the velocity thereof in the place of reflexion A, without sensible error,
will be the same as if it had descended in vacuo from the point T. Upon which account this velocity may be
represented by the chord of the arc TA. For it is a proposition well known to geometers, that the velocity of a
pendulous body in the lowest point is as the chord of the arc which it has described in its descent. After
reflexion, suppose the body A comes to the place s, and the body B to the place k. Withdraw the body B, and
find the place v, from which if the body A, being let go, should after one oscillation return to the place r, st
may be a fourth part of rv, so placed in the middle thereof as to leave rs equal to tv, and let the chord of the
arc tA. represent the velocity which the body A had in the place A immediately after reflexion. For t will be
the true and correct place to which the body A should have ascended, if the resistance of the air had been
taken off. In the same way we are to correct the place k to which the body B ascends, by finding the place [ to
which it should have ascended in vacuo. And thus everything may be subjected to experiment, in the same
manner as if we were really placed in vacuo. These things being done, we are to take the product (if I may so
say) of the body A, by the chord of the arc TA (which represents its velocity), that we may have its motion in
the place A immediately before reflexion; and then by the chord of the arc tA, that we may have its motion in
the place A immediately after reflexion. And so we are to take the product of the body B by the chord of the
arc Bl, that we may have the motion of the same immediately after reflexion. And in like manner, when two
bodies are let go together from different places, we are to find the motion of each, as well before as after
reflexion; and then we may compare the motions between themselves, and collect the effects of the reflexion.
Thus trying the thing with pendulums of ten feet, in unequal as well as equal bodies, and making the bodies
to concur after a descent through large spaces, as of 8, 12, or 16 feet, I found always, without an error of 3
inches, that when the bodies concurred together directly, equal changes towards the contrary parts were
produced in their motions, and, of consequence, that the action and reaction were always equal. As if the
body A impinged upon the body B at rest with g parts of motion, and losing 7, proceeded after reflexion with
2, the body B was carried backwards with those 7 parts. If the bodies concurred with contrary motions, A
with twelve parts of motion, and B with six, then if Areceded with 2, B receded with 8; to wit, with a
deduction of 14 parts of motion on each side. For from the motion of A subducting twelve parts, nothing will
remain; but subducting 2 parts more, a motion will be generated of 2 parts towards the contrary way; and
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so, from the motion of the body B of 6 parts, subducting 14 parts, a motion is generated of 8 parts towards
the contrary way. But if the bodies were made both to move towards the same way, A, the swifter, with 14
parts of motion, B, the slower, with 5, and after reflexion A went on with 5, B likewise went on with 14 parts;
9 parts being transferred from A to B. And so in other cases. By the congress and collision of bodies, the
quantity of motion, collected from the sum of the motions directed towards the same way, or from the
difference of those that were directed towards contrary ways, was never changed. For the error of an inch or
two in measures may be easily ascribed to the difficulty of executing everything with accuracy. It was not
easy to let go the two pendulums so exactly together that the bodies should impinge one upon the other in
the lowermost place AB; nor to mark the places s, and k, to which the bodies ascended after congress. Nay,
and some errors, too, might have happened from the unequal density of the parts of the pendulous bodies
themselves, and from the irregularity of the texture proceeding from other causes.

But to prevent an objection that may perhaps be alledged against the rule, for the proof of which this
experiment was made, as if this rule did suppose that the bodies were either absolutely hard, or at least
perfectly elastic (whereas no such bodies are to be found in nature), I must add, that the experiments we
have been describing, by no means depending upon that quality of hardness, do succeed as well in soft as in
hard bodies. For if the rule is to be tried in bodies not perfectly hard, we are only to diminish the reflexion in
such a certain proportion as the quantity of the elastic force requires. By the theory of Wren and Huygens,
bodies absolutely hard return one from another with the same velocity with which they meet. But this may be
affirmed with more certainty of bodies perfectly elastic. In bodies imperfectly elastic the velocity of the
return is to be diminished together with the elastic force; because that force (except when the parts of bodies
are bruised by their congress, or suffer some such extension as happens under the strokes of a hammer) is
(as far as I can perceive) certain and determined, and makes the bodies to return one from the other with a
relative velocity, which is in a given ratio to that relative velocity with which they met. This I tried in balls of
wool, made up tightly, and strongly compressed. For, first, by letting go the pendulous bodies, and
measuring their reflexion, I determined the quantity of their elastic force; and then, according to this force,
estimated the reflexions that ought to happen in other cases of congress. And with this computation other
experiments made afterwards did accordingly agree; the balls always receding one from the other with a
relative velocity, which was to the relative velocity with which they met as about 5 to 9. Balls of steel returned
with almost the same velocity: those of cork with a velocity something less; but in balls of glass the
proportion was as about 15 to 16. And thus the third Law, so far as it regards percussions and reflexions, is
proved by a theory exactly agreeing with experience.

In attractions, I briefly demonstrate the thing after this manner. Suppose an obstacle is interposed to
hinder the congress of any two bodies A, B, mutually attracting one the other: then if either body, as A, is
more attracted towards the other body B, than that other body B is towards the first body A, the obstacle will
be more strongly urged by the pressure of the body A than by the pressure of the body B, and therefore will
not remain in equilibrio: but the stronger pressure will prevail, and will make the system of the two bodies,
together with the obstacle, to move directly towards the parts on which B lies; and in free spaces, to go
forward in infinitum with a motion perpetually accelerated; which is absurd and contrary to the first Law.
For, by the first Law, the system ought to persevere in its state of rest, or of moving uniformly forward in a
right line: and therefore the bodies must equally press the obstacle, and be equally attracted one by the
other. I made the experiment on the loadstone and iron. If these, placed apart in proper vessels, are made to
float by one another in standing water, neither of them will propel the other; but, by being equally attracted,
they will sustain each other's pressure, and rest at last in an equilibrium.

So the gravitation betwixt the earth and its parts is mutual. Let the earth FI be cut by any plane EG into
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two parts EGF and EGI, and their weights one towards the other will be
mutually equal. For if by another plane HK, parallel to the former EG, the
greater part EGI is cut into two parts EGKH and HKI, whereof HKI is equal to
the part EFG, first cut off, it is evident that the middle part EGKH, will have no
propension by its proper weight towards either side, but will hang as it were,
and rest in an equilibrium betwixt both. But the one extreme part HKI will with
its whole weight bear upon and press the middle part towards the other extreme
part EGF; and therefore the force with which EGI, the sum of the parts HKI and
EGKH, tends towards the third part EGF, is equal to the weight of the part HKI, that is, to the weight of the
third part EGF. And therefore the weights of the two parts EGI and EGF, one towards the other, are equal, as
I was to prove. And indeed if those weights were not equal, the whole earth floating in the non-resisting

K

aether would give way to the greater weight, and, retiring from it, would be carried off in infinitum.

And as those bodies are equipollent in the congress and reflexion, whose velocities are reciprocally as their
innate forces, so in the use of mechanic instruments those agents are equipollent, and mutually sustain each
the contrary pressure of the other, whose velocities, estimated according to the determination of the forces,
are reciprocally as the forces.

So those weights are of equal force to move the arms of a balance; which during the play of the balance are
reciprocally as their velocities upwards and downwards; that is, if the ascent or descent is direct, those
weights are of equal force, which are reciprocally as the distances of the points at which they are suspended
from the axis of the balance; but if they are turned aside by the interposition of oblique planes, or other
obstacles, and made to ascend or descend obliquely, those bodies will be equipollent, which are reciprocally
as the heights of their ascent and descent taken according to the perpendicular; and that on account of the
determination of gravity downwards.

And in like manner in the pully, or in a combination of pullies, the force of a hand drawing the rope
directly, which is to the weight, whether ascending directly or obliquely, as the velocity of the perpendicular
ascent of the weight to the velocity of the hand that draws the rope, will sustain the weight.

In clocks and such like instruments, made up from a combination of wheels, the contrary forces that
promote and impede the motion of the wheels, if they are reciprocally as the velocities of the parts of the
wheel on which they are impressed, will mutually sustain the one the other.

The force of the screw to press a body is to the force of the hand that turns the handles by which it is moved
as the circular velocity of the handle in that part where it is impelled by the hand is to the progressive
velocity of the screw towards the pressed body.

The forces by which the wedge presses or drives the two parts of the wood it cleaves are to the force of the
mallet upon the wedge as the progress of the wedge in the direction of the force impressed upon it by the
mallet is to the velocity with which the parts of the wood yield to the wedge, in the direction of lines
perpendicular to the sides of the wedge. And the like account is to be given of all machines.

The power and use of machines consist only in this, that by diminishing the velocity we may augment the
force, and the contrary: from whence in all sorts of proper machines, we have the solution of this problem,;
To move a given weight with a given power, or with a given force to overcome any other given resistance.
For if machines are so contrived that the velocities of the agent and resistant are reciprocally as their forces,
the agent will just sustain the resistant, but with a greater disparity of velocity will overcome it. So that if the
disparity of velocities is so great as to overcome all that resistance which commonly arises either from the
attrition of contiguous bodies as they slide by one another, or from the cohesion of continuous bodies that
are to be separated, or from the weights of bodies to be raised, the excess of the force remaining, after all
those resistances are overcome, will produce an acceleration of motion proportional thereto, as well in the
parts of the machine as in the resisting body. But to treat of mechanics is not my present business. I was only
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willing to show by those examples the great extent and certainty of the third Law of motion. For if we
estimate the action of the agent from its force and velocity conjunctly, and likewise the reaction of the
impediment conjunctly from the velocities of its several parts, and from the forces of resistance arising from
the attrition, cohesion, weight, and acceleration of those parts, the action and reaction in the use of all sorts
of machines will be found always equal to one another. And so far as the action is propagated by the
intervening instruments, and at last impressed upon the resisting body, the ultimate determination of the
action will be always contrary to the determination of the reaction.

(4
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The Mathematical Principles of Natural Philosophy

by Isaac Newton

BooK 1.1
SEcTtiOoN 1.

Of the method of first and last ratios of quantities, by the help whereof we demonstrate the
propositions that follow.

Lemma 1.

Quantities, and the ratios of quantities, which in any finite time converge continually to equality, and
before the end of that time approach nearer the one to the other than by any given difference, become
ultimately equal.

If you deny it, suppose them to be ultimately unequal, and let D be their ultimate difference. Therefore
they cannot approach nearer to equality than by that given difference D; which is against the supposition.

Lemma ii.

Ifin any figure AacE, terminated by the right lines Aa, AE, and the curve acE,
there be inscribed any number of parallelograms Ab, Be, Cd, &c., comprehended
under equal bases AB, BC, CD, &c., and the sides, Bb, Cc, Dd, &c., parallel to one b

side Aa of the figure; and the parallelograms aKbl, bLem, cMdn, &c., are L
completed. Then if the breadth of those parallelograms be supposed to be

&
-l

™
S

z “/
&

diminished, and their number to be augmented in infinitum; I say, that the a
ultimate ratios which the inscribed figure AKbLcMdD, the circumscribed figure i \
AalbmendoE, and curvilinear figure AabedE, will have to one another, are ratios

of equality.

A" BF € D E

For the difference of the inscribed and circumscribed figures is the sum of the parallelograms KiI, Lm, Mu,
Do, that is (from the equality of all their bases), the rectangle under one of their bases Kb and the sum of
their altitudes Aa, that is, the rectangle ABla. Butthis rectangle, becauseits breadth AB is supposed
diminished in infinitum, becomes less than any given space. And therefore (by Lem. I) the figures inscribed
and circumscribed become ultimately equal one to the other; and much more will the intermediate

curvilinear figure be ultimately equal to either. Q.E.D.

Lemma iii.

The same ultimate ratios are also ratios of equality, when the, breadths, AB, BC, DC, &c., of the
parallelograms are unequal, and are all diminished in infinitum.

For suppose AF equal to the greatest breadth, and complete the parallelogram FAaf. This parallelogram
will be greater than the difference of the inscribed and circumscribed figures; but, because its breadth AF is
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diminished in infinitum, it will be come less than any given rectangle. Q.E.D.

I~
)

Cor. 1. Hence the ultimate sum of those evanescent parallelograms will in all K
parts coincide with the curvilinear figure.

Cor. 2. Much more will the rectilinear figure comprehended under the chords
of the evanescent arcs ab, bc, cd, &c., ultimately coincide with the curvilinear
figure.

S
g t"/,/
S

I\

Cor. 3. And also the circumscribed rectilinear figure comprehended under

A
the tangents of the same arcs.

Cor. 4 And therefore these ultimate figures (as to their perimeters acE) are
curvilinear limits of rectilinear figures.

Lemma iv.

If in two figures AacE, PprT, you inscribe (as before) two ranks of parallelograms, an
equal number in each rank, and, when their breadths are diminished in infinitum, the
ultimate ratios of the parallelograms in one figure to those in the other, each to each
respectively, are the same; I say, that those two figures AacE, PprT, are to one
another in that same ratio.

For as the parallelograms in the one are severally to the parallelograms in the other,
so (by composition) is the sum of all in the one to the sum of all in the other; and so is
the one figure to the other; because (by Lem. III) the former figure to the former sum,
and the latter figure to the latter sum, are both in the ratio of equality. Q.E.D.

Cor. Hence if two quantities of any kind are any how divided into an equal number of
parts, and those parts, when their number is augmented, and their magnitude
diminished in infinitum, have a given ratio one to the other, the first to the first, the
second to the second, and so on in order, the whole quantities will be one to the other
in that same given ratio. For if, in the figures of this Lemma, the parallelograms are
taken one to the other in the ratio of the parts, the sum of the parts will always be as

BF ¢ D E

not rectilinear, but

F .
N
P T
o
_—
c
A E

the sum of the parallelograms; and therefore supposing the number of the parallelograms and parts to be
augmented, and their magnitudes diminished in infinitum, those sums will be in the ultimate ratio of the

parallelogram in the one figure to the correspondent parallelogram in the other; that is (by the supposition),
in the ultimate ratio of any part of the one quantity to the correspondent part of the other.

Lemma V.

In similar figures, all sorts of homologous sides, whether curvilinear or rectilinear, are proportional; and

the areas are in the duplicate ratio of the homologous sides.

Lemma vi.

If any arc ACB, given in position is subtended by its chord AB, and in any point A, in the middle of the
continued curvature, is touched by a right line AD, produced both ways; then if the points A and B
approach one another and meet, I say, the angle BAD, contained between, the chord and the tangent, will
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be diminished in infinitum, and ultimately will v

D Z
For if that angle does not vanish, the arc ACB will contain with the
tangent AD an angle equal to a rectilinear angle; and therefore the
curvature at the point A will not be continued, which is against the /]
supposition. R
?./

Lemma vii.

The same things being supposed, I say that the ultimate ratio of the arc, chord, and tangent, any one to
any other, is the ratio of equality.

For while the point B approaches towards the point A, consider always AB and AD as produced to the
remote points b and d, and parallel to the secant BD draw bd: and let the arc A cb be always similar to the arc
ACB. Then, supposing the points A and B to coincide, the angle dAb will vanish, by the preceding Lemma;
and therefore the right lines Ab, Ad (which are always finite), and the intermediate arc Acb, will coincide,
and become equal among themselves. Wherefore, the right lines AB, AD, and the intermediate arc ACB
(which are always proportional to the former), will vanish, and ultimately acquire the ratio of equality.

Q.E.D.

Cor. 1. Whence if through B we draw BF parallel to the tangent, always A ” i

cutting any right line AF passing through A in F, this line BF will be "
g any rig P g g - ] %&\\4\\[

ultimately in the ratio of equality with the evanescent arc ACB; because, - P
r

completing the parallelogram AFBD, it is always in a ratio of equality with
AD.

Cor. 2. And if through B and A more right lines are drawn, as BE, BD, AF, AG, cutting the tangent AD and
its parallel BF; the ultimate ratio of all the abscissas AD, AE, BF, BG, and of the chord and arc AB, any one to
any other, will be the ratio of equality.

Cor. 3. And therefore in all our reasoning about ultimate ratios, we may freely use any one of those lines
for any other.

Lemma viii.

If the right lines AR, BR, with the arc ACB, the chord AB, and the tangent AD, constitute three triangles
RAB, RACB, RAD, and the points A and B approach and meet: I say, that the ultimate form of these
evanescent triangles is that of similitude, and their ultimate ratio that of equality.

For while the point B approaches towards the point A, consider always
AB, AD, AR, as produced to the remote points b, d, and r, and rbd as
drawn parallel to RD, and let the arc Acb be always similar to the arc ACB.

Then supposing the points A and B to coincide, the angle bAd will vanish;
and therefore the three triangles rAb, rAcb, rAd (which are always finite),
will coincide, and on that account become both similar and equal. And
therefore the triangles RAB, RACB, RAD, which are always similar and
proportional to these, will ultimately be come both similar and equal

among themselves. Q.E.D.

Cor. And hence in all reasonings about ultimate ratios, we may indifferently use any one of those
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triangles for any other.

Lemma ix.

If a right line AE, and a curve Line ABC, both given by position, cut each other in a given angle, A; and to
that right line, in another given angle, BD, CE are ordinately applied, meeting the curve in B, C; and the
points B and C together approach towards and meet in the point A: I say, that the areas of the triangles

ABD, ACE, will ultimately be one to the other in the duplicate ratio of the sides.

For while the points B, C, approach towards the point A, suppose

always AD to be produced to the remote points d and e, so as Ad, Ae -Z
may be proportional to AD, AE; and the ordinates db, ec, to be drawn
S, /)

parallel to the ordinates DB and EC, and meeting AB and AC produced ¢#
in b and c. Let the curve Abc be similar to the curve ABC, and draw the
right line Ag so as to touch both curves in A, and cut the ordinates DB, G

53]

EC, db, ec, in F, G, f, g. Then, supposing the length Ae to remain the °

same, let the points B and C meet in the point A; and the angle cAg p—¥
vanishing, the curvilinear areas Abd, Ace will coincide with the
rectilinear areas Afd, Age; and therefore (by Lem. V) will be one to the
other in the duplicate ratio of the sides Ad, Ae. But the areas ABD, ACE
are always proportional to these areas; and so the sides AD, AE are to
these sides. And therefore the areas ABD, ACE are ultimately one to the other in the duplicate ratio of the

sides AD, AE. Q.E.D.

A

Lemma X.

The spaces which a body describes by any finite force urging it, whether that force is determined and
immutable, or is continually augmented or continually diminished, are in the very beginning of the motion
one to the other in the duplicate ratio of the times.

Let the times be represented by the lines AD, AE, and the velocities generated in those times by the
ordinates DB, EC. The spaces described with these velocities will be as the areas ABD, ACE, described by
those ordinates, that is, at the very beginning of the motion (by Lem. IX), in the duplicate ratio of the times
AD, AE. Q.E.D.

Cor. 1. And hence one may easily infer, that the errors of bodies describing similar parts of similar figures
in proportional times, are nearly as the squares of the times in which they are generated; if so be these errors
are generated by any equal forces similarly applied to the bodies, and measured by the distances of the
bodies from those places of the similar figures, at which, without the action of those forces, the bodies would
have arrived in those proportional times.

Cor. 2. But the errors that are generated by proportional forces, similarly applied to the bodies at similar
parts of the similar figures, are as the forces and the squares of the times conjunctly.

Cor. 3. The same thing is to be understood of any spaces whatsoever described by bodies urged with
different forces; all which, in the very beginning of the motion, are as the forces and the squares of the times
conjunctly.

Cor. 4. And therefore the forces are as the spaces described in the very beginning of the motion directly,
and the squares of the times inversely.
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Cor. 5. And the squares of the times are as the spaces described directly, and the forces inversely.

Scholium.

If in comparing indetermined quantities of different sorts one with another, any one is said to be as any
other directly or inversely, the meaning is, that the former is augmented or diminished in the same ratio with
the latter, or with its reciprocal. And if any one is said to be as any other two or more directly or inversely,
the meaning is, that the first is augmented or diminished in the ratio compounded of the ratios in which the
others, or the reciprocals of the others, are augmented or diminished. As if A is said to be as B directly, and C

directly, and D inversely, the meaning is, that A is augmented or diminished in the same ratio with Bx Cx X,

BC

that is to say, that A and D

are one to the other in a given ratio.

Lemma xi.
The evanescent subtense of the angle of contact, in all curves which at the point of contact have a finite
curvature, is ultimately in the duplicate ratio of the subtense of the conterminate arc.

Case 1. Let AB be that arc, AD its tangent, BD the subtense of the angle of contact A A D
£ .

perpendicular on the tangent, AB the subtense of the arc. Draw BG perpendicular to
the subtense AB, and AG to the tangent AD, meeting in G; then let the points D, B, and
G, approach to the points d, b, and g, and suppose J to be the ultimate intersection of
the lines BG, AG, when the points D, B, have come to A. It is evident that the distance
GJ may be less than any assignable. But (from the nature of the circles passing through
the points A, B, G, A, b, g) AB2 = AG x BD, and Ab2 = Ag x bd; and therefore the ratio
of AB2 to Ab2 is compounded of the ratios of AG to Ag, and of Bd to bd. But because
GJ may be assumed of less length than any assignable, the ratio of AG to Ag may be

¢
C

such as to differ from the ratio of equality by less than any assignable difference; and
therefore the ratio of AB2 to Ab2 may be such as to differ from the ratio of BD to bd by
less than any assignable difference. There fore, by Lem. I, the ultimate ratio of AB2 to
Ab?2 is the same with the ultimate ratio of BD to bd. Q.E.D.

J
g
G

Case 2. Now let BD be inclined to AD in any given angle, and the ultimate ratio of BD to bd will always be
the same as before, and therefore the same with the ratio of AB2 to Ab2. Q.E.D.

Case 3. And if we suppose the angle D not to be given, but that the right line BD converges to a given point,
or is determined by any other condition whatever; nevertheless the angles D, d, being determined by the
same law, will always draw nearer to equality, and approach nearer to each other than by any assigned
difference, and therefore, by Lem. I, will at last be equal; and therefore the lines BD, bd are in the same ratio
to each other as before. Q.E.D.

Cor. 1. Therefore since the tangents AD, Ad, the arcs AB, Ab, and their sines, BC, bc, become ultimately
equal to the chords AB, Ab, their squares will ultimately become as the subtenses BD, bd.

Cor. 2. Their squares are also ultimately as the versed sines of the arcs, bisecting the chords, and
converging to a given point. For those versed sines are as the subtenses BD, bd.

Cor. 3. And therefore the versed sine is in the duplicate ratio of the time in which a body will describe the
arc with a given velocity.

Cor. 4. The rectilinear triangles ADB, Adb are ultimately in the triplicate ratio of the sides AD, Ad, and in a
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sesquiplicate ratio of the sides DB, db; as being in the ratio compounded of the sides AT ~, ™~ & ' D '

db. So also the triangles ABC, A bc are ultimately in the triplicate ratio of the sides BC,
bc. What I call the sesquiplicate ratio is the subduplicate of the triplicate, as being
C

compounded of the simple and subduplicate ratio.

Cor. 5. And because DB, db are ultimately parallel and in the duplicate ratio of the
lines AD, Ad, the ultimate curvilinear areas ADB, Adb will be (by the nature of the
parabola) two thirds of the rectilinear triangles ADB, Adb and the segments AB, Ab
will be one third of the same triangles. And thence those areas and those segments will

be in the triplicate ratio as well of the tangents AD, Ad, as of the chords and arcs AB, J
AB. g
G

Scholium.

But we have all along supposed the angle of contact to be neither infinitely greater nor infinitely less than
the angles of contact made by circles and their tangents; that is, that the curvature at the point A is neither
infinitely small nor infinitely great, or that the interval AJ is of a finite magnitude. For DB may be taken as
AD3: in which case no circle can be drawn through the point A, between the tangent AD and the curve AB,
and therefore the angle of contact will be infinitely less than those of circles. And by a like reasoning, if DB
be made successfully as AD4, AD5, AD6, AD7, &c., we shall have a series of angles of contact, proceeding in
infinitum, wherein every succeeding term is infinitely less than the preceding. Andif DB be made
successively as AD2; AD3/2, AD4/s, AD5/4, AD6/5, AD7/s, &c., we shall have another infinite series of angles of
contact, the first of which is of the same sort with those of circles, the second infinitely greater, and every
succeeding one infinitely greater than the preceding. But between any two of these angles another series of
intermediate angles of contact may be interposed, proceeding both ways in infinitum, wherein every
succeeding angle shall be infinitely greater or infinitely less than the preceding. As if between the terms AD2
and AD3 there were interposed the series AD 13/6, AD11/5, AD9/4, AD7/s, AD5/2, AD8/3, AD11/4, AD14/5, AD17/6
&c. And again, between any two angles of this series, a new series of intermediate angles may be interposed,
differing from one another by infinite intervals. Nor is nature confined to any bounds.

Those things which have been demonstrated of curve lines, and the superfices which they comprehend,
may be easily applied to the curve superfices and contents of solids. These Lemmas are premised to avoid the
tediousness of deducing perplexed demonstrations ad absurdum, according to the method of the ancient
geometers. For demonstrations are more contracted by the method of indivisibles: but because the
hypothesis of indivisibles seems somewhat harsh, and therefore that method is reckoned less geometrical, I
chose rather to reduce the demonstrations of the following propositions to the first and last sums and ratios
of nascent and evanescent quantities, that is, to the limits of those sums and ratios; and so to premise, as
short as I could, the demonstrations of those limits. For hereby the same thing is performed as by the
method of indivisibles; and now those principles being demonstrated, we may use them with more safety.
Therefore if hereafter I should happen to consider quantities as made up of particles, or should use little
curve lines for right ones, I would not be understood to mean indivisibles, but evanescent divisible
quantities: not the sums and ratios of determinate parts, but always the limits of sums and ratios; and that
the force of such demonstrations always depends on the method laid down in the foregoing Lemmas.

Perhaps it may be objected, that there is no ultimate proportion, of evanescent quantities; because the
proportion, before the quantities have vanished, is not the ultimate, and when they are vanished, is none. But
by the same argument, it may be alledged, that a body arriving at a certain place, and there stopping, has no
ultimate velocity: because the velocity, before the body comes to the place, is not its ultimate velocity; when it
has arrived, is none. But the answer is easy; for by the ultimate velocity is meant that with which the body is
moved, neither before it arrives at its last place and the motion ceases, nor after, but at the very instant it
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arrives; that is, that velocity with which the body arrives at its last place, and with which the motion ceases.
And in like manner, by the ultimate ratio of evanescent quantities is to be understood the ratio of the
quantities not before they vanish, nor afterwards, but with which they vanish. In like manner the first ratio
of nascent quantities is that with which they begin to be. And the first or last sum is that with which they
begin and cease to be (or to be augmented or diminished). There is a limit which the velocity at the end of
the motion may attain, but not exceed. This is the ultimate velocity. And there is the like limit in all
quantities and proportions that begin and cease to be. And since such limits are certain and definite, to
determine the same is a problem strictly geometrical. But whatever is geometrical we may be allowed to use
in determining and demonstrating any other thing that is likewise geometrical.

It may also be objected, that if the ultimate ratios of evanescent quantities are given, their ultimate
magnitudes will be also given: and so all quantities will consist of indivisibles, which is contrary to what
Euclid has demonstrated concerning incommensurables, in the 10th Book of his Elements. But this objection
is founded on a false supposition. For those ultimate ratios with which quantities vanish are not truly the
ratios of ultimate quantities, but limits towards which the ratios of quantities decreasing without limit do
always converge; and to which they approach nearer than by any given difference, but never go beyond, nor
in effect attain to, till the quantities are diminished in infinitum. This thing will appear more evident in
quantities infinitely great. If two quantities, whose difference is given, be augmented in infinitum, the
ultimate ratio of these quantities will be given, to wit, the ratio of equality; but it does not from thence follow,
that the ultimate or greatest quantities themselves, whose ratio that is, will be given. Therefore if in what
follows, for the sake of being more easily understood, I should happen to mention quantities as least, or
evanescent, or ultimate, you are not to suppose that quantities of any determinate magnitude are meant, but
such as are conceived to be always diminished without end.

(4
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The Mathematical Principles of Natural Philosophy

by Isaac Newton

Book 1.2
SECTION 11.

Of the Invention of Centripetal Forces.

Proposition i. Theorem I.

The areas, which revolving bodies describe by radii drawn to an immovable centre of force do lie in the
same immovable planes, and are proportional to the times in which they are described.

For suppose the time to be divided into equal parts, and in the first part of that time let the body by its
innate force describe the right line AB In the second part of that time, the same would (by Law L.), if not
hindered, proceed directly to c, along the line Bc equal to AB; so that by the radii AS, BS, ¢S, drawn to the
centre, the equal areas ASB, BSc, would be described.
But when the body is arrived at B, suppose that a
centripetal force acts at once with a great impulse;
and, turning aside the body from the right line Bc,
compels it afterwards to continue its motion along
the right line BC. Draw cC parallel to BS meeting BC
in C; and at the end of the second part of the time, the
body (by Cor. I. of the Laws) will be found in C, in the
same plane with the triangle ASB. Join SC, and,
because SB and Cc are parallel, the triangle SBC will
be equal to the triangle SBc, and therefore also to the
triangle SAB. By the like argument, if the centripetal
force acts successively in C, D, E. &c.; and makes the
body, in each single particle of time, to describe the
right lines CD, DE, EF, &c., they will all lie in the
same plane; and the triangle SCD will be equal to the
triangle SBC, and SDE to SCD, and SEF to SDE. And
therefore, in equal times, equal areas are described in one immovable plane: and, by composition, any sums
SADS, SAFS, of those areas, are one to the other as the times in which they are described. Now let the
number of those triangles be augmented, and their breadth diminished in infinitum; and (by Cor. 4, Lem.

II1L.) their ultimate perimeter ADF will be a curve line: and therefore the centripetal force, by which the body
is perpetually drawn back from the tangent of this curve, will act continually; and any described areas SADS,
SAFS, which are always proportional to the times of description, will, in this case also, be proportional to
those times. Q.E.D.

Cor. 1. The velocity of a body attracted towards an immovable centre, in spaces void of resistance, is
reciprocally as the perpendicular let fall from that centre on the right line that touches the orbit. For the
velocities in those places A, B, C, D, E, are as the bases AB, BC, CD, DE, EF, of equal triangles; and these
bases are reciprocally as the perpendiculars let fall upon them.
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Cor. 2. If the chords AB, BC of two arcs, successively described in equal times by the same body, in spaces
void of resistance, are completed into a parallelogram ABCV, and the diagonal BV of this parallelogram; in
the position which it ultimately acquires when those arcs are diminished in infinitum, is produced both
ways, it will pass through the centre of force.

Cor. 3. If the chords AB, BC, and DE, EF, of arcs described in equal times, in spaces void of resistance, are
completed into the parallelograms ABCV, DEFZ; the forces in B and E are one to the other in the ultimate
ratio of the diagonals BV, EZ, when those arcs are diminished in infinitum. For the motions BC and EF of the
body (by Cor. 1 of the Laws) are compounded of the motions Bc, BV, and Ef, EZ: but BV and EZ, which are
equal to Cc and Ff, in the demonstration of this Proposition, were generated by the impulses of the
centripetal force in B and E, and are therefore proportional to those impulses.

Cor. 4. The forces by which bodies, in spaces void of resistance, are drawn back from rectilinear motions,
and turned into curvilinear orbits, are one to another as the versed sines of arcs described in equal times;
which versed sines tend to the centre of force, and bisect the chords when those arcs are diminished to
infinity. For such versed sines are the halves of the diagonals mentioned in Cor. 3.

Cor. 5. And therefore those forces are to the force of gravity as the said versed sines to the versed sines
perpendicular to the horizon of those parabolic arcs which projectiles describe in the same time.

Cor. 6. And the same things do all hold good (by Cor. 5 of the Laws), when the planes in which the bodies
are moved, together with the centres of force which are placed in those planes, are not at rest, but move
uniformly forward in right lines.

Proposition ii. Theorem ii.

Every body that moves in any curve line described in a plane, and by a radius, drawn to a point either
immovable, or moving forward with an uniform rectilinear motion, describes about that point areas
proportional to the times, is urged by a centripetal force directed to that point.

Case. 1. For every body that moves in a curve line, is
(by Law 1) turned aside from its rectilinear course by
the action of some force that impels it. And that force by
which the body is turned off from its rectilinear course,
and is made to describe, in equal times, the equal least
triangles SAB, SBC, SCD, &c., aboutthe immovable
point S (by Prop. XL. Book 1, Elem. and Law II), acts in
the place B, according to the direction of a line parallel
to cC, that is, in the direction of the line BS, and in the
place C, according to the direction of a line parallel to
dD, that is, in the direction of the line CS, &c.; and
therefore acts always in the direction of lines tending to
the immovable point S. Q.E.D.

Case. 2. And (by Cor. 5 of the Laws) it is indifferent
whether the superfices in which a body describes a

curvilinear figure be quiescent, or moves together with
the body, the figure described, and its point S, uniformly forward in right lines.

Cor. 1. In non-resisting spaces or mediums, if the areas are not proportional to the times, the forces are not
directed to the point in which the radii meet; but deviate therefrom in consequentia, or towards the parts to
which the motion is directed, if the description of the areas is accelerated; but in antecedentia, if retarded.
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Cor. 2. And even in resisting mediums, if the description of the areas is accelerated, the directions of the
forces deviate from the point in which the radii meet; towards the parts to which the motion tends.

Scholium.

A body may be urged by a centripetal force compounded of several forces; in which case the meaning of
the Proposition is, that the force which results out of all tends to the point S. But if any force acts perpetually
in the direction of lines perpendicular to the described surface, this force will make the body to deviate from
the plane of its motion: but will neither augment nor diminish the quantity of the described surface, and is
therefore to be neglected in the composition of forces.

Proposition iii. Theorem iii.

Every body, that by a radius drawn to the centre of another body, how soever moved, describes areas
about that centre proportional to the times, is urged by a force compounded out of the centripetal force
tending to that other body, and of all the accelerative force by which that other body is impelled.

Let L represent the one, and T the other body; and (by Cor. 6 of the Laws) if both bodies are urged in the
direction of parallel lines, by a new force equal and contrary to that by which the second body T is urged, the
first body L will go on to describe about the other body T the same areas as before: but the force by which
that other body T was urged will be now destroyed by an equal and contrary force; and therefore (by Law I.)
that other body T, now left to itself, will either rest, or move uniformly forward in a right line: and the first
body L impelled by the difference of the forces, that is, by the force remaining, will go on to describe about
the other body T areas proportional to the times. And therefore (by Theor. I1.) the difference of the forces is
directed to the other body T as its centre. Q.E.D

Cor. 1. Hence if the one body L, by a radius drawn to the other body T, describes areas proportional to the
times; and from the whole force, by which the first body L is urged (whether that force is simple, or,
according to Cor. 2 of the Laws, compounded out of several forces), we subduct (by the same Cor.) that
whole accelerative force by which the other body is urged; the whole remaining force by which the first body
is urged will tend to the other body T, as its centre.

Cor. 2. And, if these areas are proportional to the times nearly, the remaining force will tend to the other
body T nearly.

Cor. 3. And vice versa, if the remaining force tends nearly to the other body T, those areas will be nearly
proportional to the times.

Cor. 4. If the body L, by a radius drawn to the other body T, describes areas, which, compared with the
times, are very unequal; and that other body T be either at rest, or moves uniformly forward in a right line:
the action of the centripetal force tending to that other body T is either none at all, or it is mixed and
compounded with very powerful actions of other forces: and the whole force compounded of them all, if they
are many, is directed to another (immovable or moveable) centre. The same thing obtains, when the other
body is moved by any motion whatsoever; provided that centripetal force is taken, which remains after
subducting that whole force acting upon that other body T.

Scholium.

Because the equable description of areas indicates that a centre is respected by that force with which the
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body is most affected, and by which it is drawn back from its rectilinear motion, and retained in its orbit;
why may we not be allowed, in the following discourse, to use the equable description of areas as an
indication of a centre, about which all circular motion is performed in free spaces?

Proposition iv. Theorem iv.

The centripetal forces of bodies, which by equable motions describe different circles, tend to the centres of
the same circles; and are one to the other as the squares of the arcs described in equal times applied to the
radii of the circles.

These forces tend to the centres of the circles (by Prop. II., and Cor. 2, Prop. I.), and are one to another as
the versed sines of the least arcs described in equal times (by Cor. 4, Prop. 1.); that is, as the squares of the
same arcs applied to the diameters of the circles (by Lem. VIL); and therefore since those arcs are as arcs
described in any equal times, and the diameters are as the radii, the forces will be as the squares of any arcs
described in the same time applied to the radii of the circles. Q.E.D.

Cor. 1. Therefore, since those arcs are as the velocities of the bodies the centripetal forces are in a ratio
compounded of the duplicate ratio of the velocities directly, and of the simple ratio of the radii inversely.

Cor. 2. And since the periodic times are in a ratio compounded of the ratio of the radii directly, and the
ratio of the velocities inversely, the centripetal forces, are in a ratio compounded of the ratio of the radii
directly, and the duplicate ratio of the periodic times inversely.

Cor. 3. Whence if the periodic times are equal, and the velocities therefore as the radii, the centripetal
forces will be also as the radii; and the contrary.

Cor. 4. If the periodic times and the velocities are both in the subduplicate ratio of the radii, the centripetal
forces will be equal among themselves; and the contrary.

Cor. 5. If the periodic times are as the radii, and therefore the velocities equal, the centripetal forces will be
reciprocally as the radii; and the contrary.

Cor. 6. If the periodic times are in the sesquiplicate ratio of the radii, and therefore the velocities
reciprocally in the subduplicate ratio of the radii, the centripetal forces will be in the duplicate ratio of the
radii inversely; and the contrary.

Cor. 7. And universally, if the periodic time is as any power Rn of the radius R, and therefore the velocity
reciprocally as the power Rn-1 of the radius, the centripetal force will be reciprocally as the power R2n-1 of
the radius; and the contrary.

Cor. 8. The same things all hold concerning the times, the velocities, and forces by which bodies describe
the similar parts of any similar figures that have their centres in a similar position with those figures; as
appears by applying the demonstration of the preceding cases to those. And the application is easy, by only
substituting the equable description of areas in the place of equable motion, and using the distances of the
bodies from the centres instead of the radii.

Cor. 9. From the same demonstration it likewise follows, that the arc which a body, uniformly revolving in
a circle by means of a given centripetal force, describes in any time, is a mean proportional between the
diameter of the circle, and the space which the same body falling by the same given force would descend
through in the same given time.

Scholium.
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The case of the 6th Corollary obtains in the celestial bodies (as Sir Christopher Wren, Dr. Hooke, and Dr.
Halley have severally observed); and therefore in what follows, I intend to treat more at large of those things
which relate to centripetal force decreasing in a duplicate ratio of the distances from the centres.

Moreover, by means of the preceding Proposition and its Corollaries, we may discover the proportion of a
centripetal force to any other known force, such as that of gravity. For if a body by means of its gravity
revolves in a circle concentric to the earth, this gravity is the centripetal force of that body. But from the
descent of heavy bodies, the time of one entire revolution, as well as the arc described in any given time, is
given (by Cor. 9 of this Prop.). And by such propositions, Mr. Huygens, in his excellent book De Horologio
Oscillatorio, has compared the force of gravity with the centrifugal forces of revolving bodies.

The preceding Proposition may be likewise demonstrated after this manner. In any circle suppose a
polygon to be inscribed of any number of sides. And if a body, moved with a given velocity along the sides of
the polygon, is reflected from the circle at the several angular points, the force, with which at every reflection
it strikes the circle, will be as its velocity: and therefore the sum of the forces, in a given time, will be as that
velocity and the number of reflections conjunctly: that is (if the species of the polygon be given), as the
length described in that given time, and increased or diminished in the ratio of the same length to the radius
of the circle; that is, as the square of that length applied to the radius; and therefore the polygon, by having
its sides diminished in infinitum, coincides with the circle, as the square of the arc described in a given time
applied to the radius. This is the centrifugal force, with which the body impels the circle; and to which the
contrary force, wherewith the circle continually repels the body towards the centre, is equal.

Proposition v. Problem I.

There being given, in any places, the velocity with which a body describes a given figure, by means of
forces directed to some common centre: to find that centre.

Let the three right lines PT, TQV, VR touch the figure described in as
many points, P, Q, R, and meet in T and V. On the tangents erect the
perpendiculars PA, QB, RC, reciprocally proportional to the velocities of the
body in the points P, Q, R, from which the perpendiculars were raised; that
is, so that PA may be to QB as the velocity in Q, to the velocity in P, and QB
to RC as the velocity in R to the velocity in Q. Through the ends A, B, C, of
the perpendiculars draw AD, DBE, EC, at right angles, meeting in D and E:

and the right lines TD, VE produced, will meet in S, the centre required.

For the perpendiculars let fall from the centre S on the tangents PT, QT, are reciprocally as the velocities of
the bodies in the points P and Q (by Cor. 1, Prop. 1.), and therefore, by construction, as the perpendiculars
AP, BQ directly; that is, as the perpendiculars let fall from the point D on the tangents. Whence it is easy to
infer that the points S, D, T, are in one right line. And by the like argument the points S, E, V are also in one
right line; and therefore the centre S is in the point where the right lines TD, VE meet. Q.E.D.

Proposition vi. Theorem V.

In a space void of resistance, if a body revolves in any orbit about an immouvable centre, and in the least
time describes any arc just then nascent; and the versed sine of that arc is supposed to be drawn bisecting
the chord, and produced passing through the centre of force: the centripetal force in the middle of the arc

will be as the versed sine directly and the square of the time inversely.
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For the versed sine in a given time is as the force (by Cor. 4, Prop. 1); and augmenting the time in any
ratio, because the arc will be augmented in the same ratio, the versed sine will be augmented in the duplicate
of that ratio (by Cor. 2 and 3, Lem. XI.), and therefore is as the force and the square of the time. Subduct on
both sides the duplicate ratio of the time, and the force will be as the versed sine directly, and the square of
the time inversely. Q.E.D.

And the same thing may also be easily demonstrated by Corol. 4, Lem. X.

Cor. 1. If a body P revolving about the centre S describes a curve line
APQ, which a right line ZPR touches in any point P; and from any other
point Q of the curve, QR is drawn parallel to the distance SP, meeting the
tangent in R; and QT is drawn perpendicular to the distance SP; the

centripetal force will be reciprocally as the solid %, if the solid be

taken of that magnitude which it ultimately acquires when the points P and A
Q coincide. For QR is equal to the versed sine of double the arc QP, whose v’/s

middle is P: and double the triangle SQP, or SP x QT is proportional to the time in which that double arc is
described; and therefore may be used for the exponent of the time.

Cor. 2. By a like reasoning, the centripetal force is reciprocally as the solid %; if SY is a
perpendicular from the centre of force on PR the tangent of the orbit. For the rectangles SY x QP and

SP x QT are equal.

Cor. 3. If the orbit is either a circle, or touches or cuts a circle concentrically, that is, contains with a circle
the least angle of contact or section, having the same curvature and the same radius of curvature at the point
P; and if PV be a chord of this circle, drawn from the body through the centre of force; the centripetal force
will be reciprocally as the solid SP2 x PV. For PV is %%2

Cor. 4. The same things being supposed, the centripetal force is as the square of the velocity directly, and

that chord inversely. For the velocity is reciprocally as the perpendicular SY, by Cor. 1. Prop. I.

Cor. 5. Hence if any curvilinear figure APQ is given, and therein a point S is also given, to which a
centripetal force is perpetually directed, that law of centripetal force may be found, by which the body P will
be continually drawn back from a rectilinear course, and being detained in the perimeter of that figure, will

describe the same by a perpetual revolution. That is, we are to find, by computation, either the solid
SP2 x QT2
~ QR
following Problems.

or the solid SP2 x PV, reciprocally proportional to this force. Examples of this we shall give in the

Proposition vii. Problem ii.

If a body revolves in the circumference of a circle; it is proposed to find the law of centripetal force
directed to any given point.

Let VQPA be the circumference of the circle; S the given point to which as to a centre the force tends; P the
body moving in the circumference; Q the next place into which it is to move; and PRZ the tangent of the
circle at the preceding place. Through the point S draw the chord PV, and the diameter VA of the circle: join
AP, and draw QT perpendicular to SP, which produced, may meet the tangent PR in Z; and lastly, through
the point Q, draw LR parallel to SP, meeting the circle in L, and the tangent PZ in R. And, because of the

similar triangles ZQR, ZTP, VPA, we shall have RP2, that is, QRL to QT2 as AV2to PV2. And therefore
QRL x SP2 SP2
AV2 QR

is equal to QT2. Multiply those equals by and the points P and Q coinciding, for RL write PV;
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SP2 x PV3 _ SP2 x QT2
then we shall have AVe R And therefore (by Cor 1 and

5, Prop. VI.) the centripetal force is reciprocally as

SP2 x PV3. ;
v that is
(because AV2 is given), reciprocally as the square of the distance or

altitude SP, and the cube of the chord PV conjunctly. Q.E.L

The same otherwise.

On the tangent PR produced let fall the perpendicular SY; and
(because of the similar triangles SYP, VPA), we shall have AV to PV as

SPXPV _ SP2x PV3 _
SP to SY, and therefore T SY, and e SY2 x PV. And

therefore (by Corol. 3 and 5, Prop. VI),the centripetal force is \_/

reciprocally as SP%VEV?’; that is (because AV is given), reciprocally as _

SP2x PV3. Q.E.L

Cor. 1. Hence if the given point S, to which the centripetal force always tends, is placed in the
circumference of the circle, as at V, the centripetal force will be reciprocally as the quadrato-cube (or fifth
power) of the altitude SP.

Cor. 2. The force by which the body P in the circle APTV revolves about the
centre of force S is to the force by which the same body P may revolve in the same
circle, and in the same periodic time, about any other centre of force R, as
RP2 x SP to the cube of the right line SG, which, from the first centre of force S is
drawn parallel to the distance PR of the body from the second centre of force R,

meeting the tangent PG of the orbitin G. For by the construction of this

Proposition, the former force is to the latter as RP2 x PT3 to SP2 x PV3 ; that is, as ¥

SP x RP2 to %; or (because of the similar triangles PSG, TPV) to SG3.

A

Cor. 3. The force by which the body P in any orbit revolves about the centre of force S, is to the force by
which the same body may revolve in the same orbit, and the same periodic time, about any other centre of
force R, as the solid SP x RP2, contained under the distance of the body from the first centre of force S, and
the square of its distance from the second centre of force R, to the cube of the right line SG, drawn from the
first centre of the force S, parallel to the distance RP of the body from the second centre of force R, meeting
the tangent PG of the orbit in G. For the force in this orbit at any point P is the same as in a circle of the same
curvature.

Proposition viii. Problem iii.

If a body mouves in the semi-circumference PQA; it is proposed to find the law of the centripetal force
tending to a point S, so remote, that all the lines PS, RS drawn thereto, may be taken for parallels.

From C, the centre of the semi-circle, let the semi-diameter CA he drawn,
cutting the parallels at right angles in M and N, and join CP. Because of the
similar triangles CPM, PZT, and RZQ, we shall have CP2 to PM2 as PR2 to _E"" q
QT2; and, from the nature of the circle, PR2 is equal to the rectangle
QR x (RN + QN), or, the points P, Q, coinciding, to the rectangle QR x 2PM. Ry c
Therefore CP2 is to PM2 as QRx 2PM to QT2;and QT2 _ 2PM3 and l

QR CP2”
QTZ’;{SM = 2PM€P); SP2  And therefore (by Corol. 1 and 5; Prop. V1.), the g &

: : : 2PM3 x SP2 25P2
centripetal force is reciprocally as = Cps CP2

; that is (neglecting the given ratio ), reciprocally as PM3.
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Q.EL

And the same thing is likewise easily inferred from the preceding Proposition.

Scholium.

And by a like reasoning, a body will be moved in an ellipsis, or even in an hyperbola, or parabola, by a
centripetal force which is reciprocally ae the cube of the ordinate directed to an infinitely remote centre of
force.

Proposition ix. Problem iv.

If a body revolves in a spiral PQS, cutting all the radii SP, SQ, &c., in a given angle; it is proposed to find
the law of the centripetal force tending to the centre of that spiral.

‘r b

Suppose the indefinitely small angle PSQ to be given; because, then, all the angles are given, the figure
SPRQT will be given in specie. Therefore the ratio 8%{ is also given, and % is as QT, that is (because the
figure is given in specie), as SP. But if the angle PSQ is any way changed, the right line QR, subtending the

angle of contact QPR (by Lemma XI) will be changed in the duplicate ratio of PR or QT. Therefore the ratio

% remains the same as before, that is, as SP. And % is as SP3, and therefore (by Corol. 1 and 5,

Prop. VI) the centripetal force is reciprocally as the cube of the distance SP. Q.E.IL

The same otherwise.

The perpendicular SY let fall upon the tangent, and the chord PV of the circle concentrically cutting the
spiral, are in given ratios to the height SP; and therefore SP3 is as SY2 x PV, that is (by Corol. 3 and 5, Prop.
VI) reciprocally as the centripetal force.

Lemma xii.

All parallelograms circumscribed about any conjugate diameters of a given ellipsis or hyperbola are equal
among themselves.

This is demonstrated by the writers on the conic sections.

Proposition x. Problem V.

If a body revolves in an ellipsis; it is proposed to find the law of the centripetal force tending to the centre
of the ellipsis.
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Suppose CA, CB to be semi-axes of the ellipsis; GP, DK, conjugate diameters; PF, QT perpendiculars to
those diameters; Qu an ordinate to the diameter GP; and if the parallelogram QuPR be completed, then (by
the properties of the conic sections) the rectangle PvG will be to Qu2 as PC2 to CD2; and (because of the
similar triangles QuT, PCF), Qu2 to QT2 as PC2 to PF2; and, by composition, the ratio of PvG to QT2 is
compounded of the ratio of PC2 to CD2, and of the ratio of PC2to PF2, that is, vG to % as PC2 to

CDz2 x PF2
PC2

for vG; and multiplying the extremes and means together, we shall have

. Put QR for Pv, and (by Lem. XII) BC x CA for CD x PF; also (the points P and Q coinciding) 2PC

QT2 x PC2 2BC2 x CA2
QR — pC

Therefore (by Cor. 5, Prop. VI),the centripetal force is reciprocally as %; that is (because

equal to

2B(C2 x CAz is given), reciprocally as that is, directly as the distance PC. QEL

i
pPC

The same otherwise.

In the right line PG on the other side of the point T, take the point u so that Tu may be equal to Tv; then
take uV, such as shall be to vG as DC2 to PC2. And because Qu2 is to PvG as DC2 to PC2 (by the conic
sections), we shall have QV2=Pv x uV. Add the rectangle uPv to both sides, and the square of the chord of the
arc PQ will be equal to the rectangle VPv; and therefore a circle which touches the conic section in P, and
passes through the point Q, will pass also through the point V. Now let the points P and Q meet, and the

ratio of uV to vG, which is the same with the ratio of DC2 to PC2, will become the ratio of PV to PG, or PV to

2DCz2
PC

(by Cor. 3, Prop VI); that is (because 2DC2 x PF2 is given) directly as

2PC; and therefore PV will be equal to

2DCz2
PC x PF2

. And therefore the force by which the body P revolves in the

ellipsis will be reciprocally as

PC. QELL

Cor. 1. And therefore the force is as the distance of the body from the centre of the ellipsis; and, vice versa,
if the force is as the distance, the body will move in an ellipsis whose centre coincides with the centre of
force, or perhaps in a circle into which the ellipsis may degenerate.

Cor. 2. And the periodic times of the revolutions made in all ellipses whatsoever about the same centre will
be equal. For those times in similar ellipses will be equal (by Corol. 3 and 8, Prop. IV); but in ellipses that
have their greater axis common, they are one to another as the whole areas of the ellipses directly, and the
parts of the areas described in the same time inversely; that is, as the lesser axes directly, and the velocities
of the bodies in their principal vertices inversely; that is, as those lesser axes directly, and the ordinates to
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the same point of the common axes inversely; and therefore (because of the equality of the direct and inverse
ratios) in the ratio of equality.

Scholium.

If the ellipsis, by having its centre removed to an infinite distance, de generates into a parabola, the body
will move in this parabola; and the force, now tending to a centre infinitely remote, will become equable.
Which is Galileo's theorem. And if the parabolic section of the cone (by changing the inclination of the
cutting plane to the cone) degenerates into an hyperbola, the body will move in the perimeter of this
hyperbola, having its centripetal force changed into a centrifugal force. And in like manner as in the circle, or
in the ellipsis, if the forces are directed to the centre of the figure placed in the abscissa, those forces by
increasing or diminishing the ordinates in any given ratio; or even by changing the angle of the inclination of
the ordinates to the abscissa, are always augmented or diminished in the ratio of the distances from the
centre; provided the periodic times remain equal; so also in all figures whatsoever, if the ordinates are
augmented or diminished in any given ratio, or their inclination is any way changed, the periodic time
remaining the same, the forces directed to any centre placed in the abscissa are in the several ordinates
augmented or diminished in the ratio of the distances from the centre.

(4
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The Mathematical Principles of Natural Philosophy

by Isaac Newton

Book 1.3
SECTION 111.

Of the motion of bodies in eccentric conic sections.

Proposition xi. Problem vi.

If a body revolves in an ellipsis; it is required to find the law of the centripetal force tending to the focus of

the ellipsis.

Let S be the focus of the ellipsis. Draw SP cutting the diameter DK of the ellipsis in E, and the ordinate Qu
in x; and complete the parallelogram QxPR. It is evident that EP is equal to the greater semi-axis AC: for
drawing HI from the other focus H of the ellipsis parallel to EC, because CS, CH are equal, ES, EI will be also
equal; so that EP is the half sum of PS, PI, that is (because of the parallels HI, PR, and the equal angles IPR,
HPZ), of PS, PH, which taken together are equal to the whole axis 2AC. Draw QT perpendicular to SP, and

2282 ), we shall have Lx QR to Lx Pv as QR to

Pv, that is, as PE or AC to PC; and L x Pv to GuP as L to Gv; and GuP to Qu2 as PC2 to CD2; and by (Corol. 2,
Lem. VII) the points Q and P coinciding, Qu2 is to Qx2 in the ratio of equality; and Qx2 or Qu2 is to QT2 as
EP2 to PF2, that is, as CA2 to PF2, or (by Lem. XII) as CD2 to CB2. And compounding all those ratios
together, we shall have L.x QR to QT2 as AC x L x PC2 x CD2, or 2CB2 x PC2 x CD2 to PC x Gv x CD2 x CB2,
or as 2PC to Gu. But the points Q and P coinciding, 2PC and Guv are equal. And therefore the quantities

putting L for the principal latus rectum of the ellipsis (or for

L x QR and QT2, proportional to these, will be also equal. Let those equals be drawn into %I;z, and L x SP2

will become equal to % And therefore (by Corol. 1 and 5, Prop. VI) the centripetal force is

reciprocally as L x SP2, that is, reciprocally in the duplicate ratio of the distance SP. Q.E.IL

The same otherwise.
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Since the force tending to the centre of the ellipsis, by which the body P may revolve in that ellipsis, is (by
Corol. 1, Prop. X.) as the distance CP of the body from the centre C of the ellipsis; let CE be drawn parallel to
the tangent PR of the ellipsis; and the force by which the same body P may revolve about any other point's of

the ellipsis, if CE and PS intersect in E, will be as % (by Cor. 3, Prop. VIL); that is, if the point S is the focus

of the ellipsis, and therefore PE be given as SP2 reciprocally. Q.E.L

With the same brevity with which we reduced the fifth Problem to the parabola, and hyperbola, we might
do the like here: but because of the dignity of the Problem and its use in what follows. I shall confirm the
other cases by particular demonstrations.

Proposition xii. Problem vii.

Suppose a body to move in an hyperbola; it is required to find the law of the centripetal force tending to
the focus of that figure.

Let CA, CB be the semi-axes of the hyperbola; PG, KD other conjugate diameters; PF a perpendicular to
the diameter KD; and Qu an ordinate to the diameter GP. Draw SP cutting the diameter DK in E, and the
ordinate Qu in x, and complete the parallelogram QRPx. It is evident that EP is equal to the semi-transverse
axis AC; for drawing HI, from the other focus H of the hyperbola, parallel to EC, because CS, CH are equal,
ES, EI will be also equal; so that EP is the half difference of PS, PI; that is (because of the parallels IH, PR,

1

e

'~
[ —, PRSP L L e

K

and the equal angles IPR, HPZ), of PS, PH, the difference of which is equal to the whole axis 2AC. Draw QT

perpendicular to SP; and putting L for the principal latus rectum of the hyperbola (that is, for 23382, we shall

have L x QR to L x Pv as QR to Pv, or Px to Pv, that is (because of the similar triangles Pxv, PEC), as PE to
PC, or AC to PC. And L x Pv will be to Gv x Pv as L to Guv; and (by the properties of the conic sections) the

rectangle GuP is to Qu2 as PC2 to CD?2; and by (Cor. 2, Lem. VIIL.), Qu2 to Qx2 the points Q and P coinciding,
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becomes a ratio of equality; and Qx2 or Qu2 is to QT2 as EP2 to PF2, that is, as CA2 to PF2, or (by Lem. XII.)
as CD2 to CB2: and, compounding all those ratios together, we shall have L x QR to QT2 as AC x L x PC2 x
CD2, or 2CB2 x PC2 x CD2 to PC x Gv x CD2 x CB2, or as 2PC to Gv. But the points P and Q coinciding, 2PC
and Gu are equal. And therefore the quantities L x QR and QT?2, proportional to them, will be also equal. Let

%IE, and we shall have L x SP2 equal to % And therefore (by Cor. I and

5, Prop. VI1.) the centripetal force is reciprocally as L x SP2, that is, reciprocally in the duplicate ratio of the
distance SP. Q.E.L

those equals be drawn into

The same otherwise.

Find out the force tending from the centre C of the hyperbola. This will be proportional to the distance CP.

PE3

But from thence (by Cor. 3, Prop. VIL.) the force tending to the focus S will be as Spa’

that is, because PE is

given reciprocally as SP2. Q.E.I.

And the same way may it be demonstrated, that the body having its centripetal changed into a centrifugal
force, will move in the conjugate hyperbola.

Lemma xiii.

The latus rectum of a parabola belonging to any vertex is quadruple the distance of that vertex from the
focus of the figure.

This is demonstrated by the writers on the conic sections.

Lemma xiv.

The perpendicular, let fall from the focus of a parabola on its tangent, is a mean proportional between the
distances of the focus from the point of contact, and from the principal vertex of the figure.

For, let AP be the parabola, S its focus, A its principal vertex, P the
point of contact, PO an ordinate to the principal diameter, PM the
tangent meeting the principal diameter in M, and SN the
perpendicular from the focus on the tangent: join AN, and because of
the equal lines MS and SP, MN and NP, MA and AO, the right lines
AN, OP, will be parallel; and thence the triangle SAN will be right-

angled at A, and similar to the equal triangles SNM, SNP; therefore
PSisto SN as SN to SA. Q.E.D.

Cor. 1. PS2 is to SN2 as PS to SA.
Cor. 2. And because SA is given, SN2 will be as PS.

Cor. 3. And the concourse of any tangent PM, with the right line SN. drawn from the focus perpendicular
on the tangent, falls in the right line AN that touches the parabola in the principal vertex.

Proposition xiii. Problem viii.

If a body moves in the perimeter of a parabola; it is required to find the law of the centripetal force
tending to the focus of that figure.
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Retaining the construction of the preceding Lemma, let P be the body in the perimeter of the parabola;
and from the place Q, into which it is next to succeed, draw QR parallel and QT perpendicular to SP, as also
Qu parallel to the tangent, and meeting the diameter PG in v, and the distance SP in x. Now, because of the
similar triangles Pxv, SPM, and of the equal sides SP, SM of the one, the sides Px or QR and Pv of the other
will be also equal. But (by the conic sections) the square of the ordinate Qu is equal to the rectangle under
the latus rectum and the segment Pv of the diameter; that is (by Lem. XIIL.), to the rectangle 4PS x Pv, or
4PS x QR; and the points P and Q coinciding, the ratio of Qu to Qx (by Cor. 2, Lem. VIL.,) becomes a ratio of
equality. And therefore Qx2, in this case, becomes equal to the rectangle 4PS x QR. But (because of the
similar triangles QxT, SPN), Qx2 is to QT2 as PS2 to SN2, that is (by Cor. 1, Lem. XIV.), as PS to SA; that is,

as 4PS x QR to 4SA x QR, and therefore (by Prop. IX. Lib. V., Elem.) QT2 and 4SA x QR are equal. Multiply
SP2 SP2 x QT2
or> TR
V1.), the centripetal force is reciprocally as SP2 x 4SA; that is, because 4SA is given; reciprocally in the
duplicate ratio of the distance SP. Q.E.L

these equals by will become equal to SP2 x 4SA: and therefore (by Cor. 1 and 5, Prop.

Cor. 1. From the three last Propositions it follows, that if any body P goes from the place P with any
velocity in the direction of any right line PR, and at the same time is urged by the action of a centripetal force
that is reciprocally proportional to the square of the distance of the places from the centre, the body will
move in one of the conic sections, having its focus in the centre of force; and the contrary. For the focus, the
point of contact, and the position of the tangent, being given, a conic section may be described, which at that
point shall have a given curvature. But the curvature is given from the centripetal force and velocity of the
body being given; and two orbits, mutually touching one the other, cannot be described by the same
centripetal force and the same velocity.

Cor. 2. If the velocity with which the body goes from its place P is such, that in any infinitely small moment
of time the lineola PR may be thereby described; and the centripetal force such as in the same time to move

the same body through the space QR; the body will move in one of the conic sections, whose principal latus
rectum is the quantity% in its ultimate state, when the lineolae PR, QR are diminished in infinitum. In
these Corollaries I consider the circle as an ellipsis; and I except the case where the body descends to the
centre in a right line.

Proposition xiv. Theorem vi.

If several bodies revolve about one common centre, and the centripetal force is reciprocally in the duplicate
ratio of the distance of places from the centre; I say, that the principal latera recta of their orbits are in the
duplicate ratio of the areas, which the bodies by radii drawn to the centre describe in the same time.
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For (by Cor. 2, Prop. XIII) the latus rectum L is equal to the quantity %

in its ultimate state when the points P and Q coincide. But the lineola QR in
a given time is as the generating centripetal force; that is (by supposition),

reciprocally as SP2 . And therefore QT2 45 a5 QT2 x SP2; that is, the latus

QR
rectum L is in the duplicate ratio of the area QT x SP. Q.E.D. j
Cor. Hence the whole area of the ellipsis, and the rectangle under the axes, /
which is proportional to it, is in the ratio compounded of the subduplicate :

ratio of the latus rectum, and the ratio of the periodic time. For the whole area is as the area QT x SP,
described in a given time, multiplied by the periodic time.

Proposition xv. Theorem vii.

The same things being supposed, I say, that the periodic times in ellipses are in the sesquiplicate ratio of
their greater axes.

For the lesser axis is a mean proportional between the greater axis and the latus rectum; and, therefore,
the rectangle under the axes is in the ratio compounded of the subduplicate ratio of the latus rectum and the
sesquiplicate ratio of the greater axis. But this rectangle (by Cor. 3. Prop. XIV) is in a ratio compounded of
the subduplicate ratio of the latus rectum, and the ratio of the periodic time. Subduct from both sides the
subduplicate ratio of the latus rectum, and there will remain the sesquiplicate ratio of the greater axis, equal
to the ratio of the periodic time. Q.E.D.

Cor. Therefore the periodic times in ellipses are the same as in circles whose diameters are equal to the
greater axes of the ellipses.

Proposition xvi. Theorem viii.

The same things being supposed, and right lines being drawn to the bodies that shall touch the orbits, and
perpendiculars being let fall on those tangents from the common focus; I say, that the velocities of the
bodies are in a ratio compounded of the ratio of the perpendiculars inversely, and the subduplicate ratio of
the principal latera recta directly.

From the focus S draw SY perpendicular to the tangent PR, and the velocity of the body P will be
reciprocally in the subduplicate ratio of the quantity % For that velocity is as the infinitely small arc PQ

described in a given moment of time, that is (by Lem. VII), as the tangent S g7
PR; that is (because of the proportionals PR to QT, and SP to SY), as

%; or as SY reciprocally, and SP x QT directly; but SP x QT is as the
area described in the given time, thatis (by Prop. XIV), in the
subduplicate ratio of the latus rectum. Q.E.D.

Cor. 1. The principal latera recta are in aratio compounded of the
duplicate ratio of the perpendiculars and the duplicate ratio of the
velocities.

Cor. 2. The velocities of bodies, in their greatest and least distances from the common focus, are in the
ratio compounded of the ratio of the distances inversely, and the subduplicate ratio of the principal latera
recta directly. For those perpendiculars are now the distances.
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Cor. 3. And therefore the velocity in a conic section, at its greatest or least distance from the focus, is to the
velocity in a circle, at the same distance from the centre, in the subduplicate ratio of the principal latus
rectum to the double of that distance.

Cor. 4. The velocities of the bodies revolving in ellipses, at their mean distances from the common focus,
are the same as those of bodies revolving in circles, at the same distances; that is (by Cor. 6, Prop. IV),
reciprocally in the subduplicate ratio of the distances. For the perpendiculars are now the lesser semi-axes,
and these are as mean proportionals between the distances and the latera recta. Let this ratio inversely be
compounded with the subduplicate ratio of the latera recta directly, and we shall have the subduplicate ratio
of the distance inversely.

Cor. 5. In the same figure, or even in different figures, whose principal latera recta are equal, the velocity
of a body is reciprocally as the perpendicular let fall from the focus on the tangent.

Cor. 6. In a parabola, the velocity is reciprocally in the subduplicate ratio of the distance of the body from
the focus of the figure; it is more variable in the ellipsis, and less in the hyperbola, than according to this
ratio. For (by Cor. 2, Lem. XIV) the perpendicular let fall from the focus on the tangent of a parabola is in the
subduplicate ratio of the distance. In the hyperbola the perpendicular is less variable; in the ellipsis more.

Cor. 7. In a parabola, the velocity of a body at any distance from the focus is to the velocity of a body
revolving in a circle, at the same distance from the centre, in the subduplicate ratio of the number 2 to 1; in
the ellipsis it is less, and in the hyperbola greater, than according to this ratio, (by Cor. 2 of this Prop.) the
velocity at the vertex of a parabola is in this ratio, and (by Cor. 6 of this Prop. and Prop. IV) the same
proportion holds in all distances. And hence, also, in a parabola, the velocity is everywhere equal to the
velocity of a body revolving in a circle at half the distance; in the ellipsis it is less, and in the hyperbola
greater.

Cor. 8. The velocity of a body revolving in any conic section is to the velocity of a body revolving in a circle,
at the distance of half the principal latus rectum of the section, as that distance to the perpendicular let fall
from the focus on the tangent of the section. This appears from Cor. 5.

Cor. 9. Wherefore since (by Cor. 6, Prop. IV), the velocity of a body revolving in this circle is to the velocity
of another body revolving in any other circle reciprocally inthe subduplicate ratio of the distances;
therefore, ex aequo, the velocity of a body revolving in a conic section will be to the velocity of a body
revolving in a circle at the same distance as a mean proportional between that common distance, and half
the principal latus rectum of the section, to the perpendicular let fall from the common focus upon the
tangent of the section.

Proposition xvii. Problem ix.

Supposing the centripetal force to be reciprocally proportional to the squares of the distances of places
from the centre, and that the absolute quantity of that force is known; it is required to determine the line
which a body will describe that is let go from a given place with a given velocity in, the direction of a given
right line.

Let the centripetal force tending to the point S be such as will make the body p revolve in any given orbit
pg; and suppose the velocity of this body in the place p is known. Then from the place P suppose the body P
to be let with a given velocity in the direction of the line PR; but by virtue of a centripetal force to be
immediately turned aside from that right line into the conic section PQ. This, the right line PR will therefore
touch in P. Suppose likewise that the right line pr touchesthe orbit pg in p, and if from S you suppose
perpendiculars let fall on those tangents, the principal latus rectum of the conic section (by Cor. 1, Prop. XVI)
will be to the principal latus rectum of that orbit in a ratio compounded of the duplicate ratio of the
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perpendiculars, and the duplicate ratio of the velocities
the focus S of the conic section is also given. Let the P
angle RPH be the complement of the angle RPS to two
right; and the line PH, in which the other focus H is
placed, is given by position. Let fall SK perpendicular
on PH, and erect the conjugate semi-axis BC; this
done, we shall have SP2 — 2KPH + PH2 = SH2 = 4CHz=
= 4BH2 - 4BC2 =(SP+PH2)-Lx(SP+PH) =
SP2 + 2SPH + PH2 - L x (SP + PH). Add on both sides
oKPH - SP2 — PH2 + L x (SP + PH), and we shall have
Lx (SP + PH) = 2SPH + 2KPH, or SP + PH to PH, as
2SP + 2KP to L. Whence PH is given both in length and position. That is, if the velocity of the body in P is
such that the latus rectum L is less than 2SP + 2KP, PH will lie on the same side of the tangent PR with the
line SP; and therefore the figure will be an ellipsis, which from the given foci S, H, and the principal axis SP +
PH, is given also. But if the velocity of the body is so great, that the latus rectum L becomes equal to 2SP +
2KP, the length PH will be infinite; and therefore, the figure will be a parabola, which has its axis SH parallel

to the line PK, and is thence given. But if the body goes from its place P with a yet greater velocity, the length
PH is to be taken on the other side the tangent; and so the tangent passing between the foci, the figure will
be an hyperbola having its principal axis equal to the difference of the lines SP and PH, and thence is given.
For if the body, in these cases, revolves in a conic section so found, it is demonstrated in Prop. XI, XII, and
XIII, that the centripetal force will be reciprocally as the square of the distance of the body from the centre of
force S; and therefore we have rightly determined the line PQ, which a body let go from a given place P with
a given velocity, and in the direction of the right line PR given by position, would describe with such a force.
Q.E.F.

Cor. 1. Hence in every conic section, from the principal vertex D, the latus rectum L, and the focus S given,
the other focus H is given, by taking DH to DS as the latus rectum to the difference between the latus rectum
and 4DS. For the proportion, SP + PH to PH as 2SP + 2KP to L, becomes, in the case of this Corollary, DS +
DH to DH as 4DS to L, and by division DS to DH as 4DS - L to L.

Cor. 2. Whence if the velocity of a body in the principal vertex D is given, the orbit may be readily found; to
wit, by taking its latus rectum to twice the distance DS, in the duplicate ratio of this given velocity to the
velocity of a body revolving in a circle at the distance DS (by Cor. 3, Prop. XVI1.), and then taking DH to DS
as the latus rectum to the difference between the latus rectum and 4DS.

Cor. 3. Hence also if a body move in any conic section, and is forced out of its orbit by any impulse, you
may discover the orbit in which it will afterwards pursue its course. For by compounding the proper motion
of the body with that motion, which the impulse alone would generate, you will have the motion with which
the body will go off from a given place of impulse in the direction of a right line given in position.

Cor. 4. And if that body is continually disturbed by the action of some foreign force, we may nearly know
its course, by collecting the changes which that force introduces in some points, and estimating the continual
changes it will undergo in the intermediate places, from the analogy that appears in the progress of the
series.

Scholium.

If a body P, by means of a centripetal force tending to any given point R, move in the perimeter of any
given conic section whose centre is C; and the law of the centripetal force is required: draw CG parallel to the
radius RP, and meeting the tangent PG of the orbit in G; and the force required (by Cor. 1, and Schol. Prop.
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The Mathematical Principles of Natural Philosophy

by Isaac Newton

Book 1.4

Section iv.

Of the finding of elliptic, parabolic, and hyperbolic orbits, from the focus given.
LEMMA xVv.

If from the two foci S, H, of any ellipsis or hyberbola, we draw to any third point V the right lines SV, HV,
whereof one HV is equal to the principal axis of the figure, that is, to the axis in which the foci are situated,
the other, SV, is bisected in T by the perpendicular TR let fall upon it; that perpendicular TR will
somewhere touch the conic section: and, vice versa, if it does touch it, HV will be equal to the principal axis

of the figure.
For, let the perpendicular TR cut the right line HV, produced, if need be, in R; and v
join SR. Because TS, TV are equal, therefore the right lines SR, VR, as well as the
angles TRS, TRV, will be also equal. Whence the point R will be in the conic section, R T
and the perpendicular TR, will touch the same; and the contrary. Q.E.D. n

ProprosITION XvIil. PROBLEM X.

From a focus and the principal axes given, to describe elliptic and hyperbolic trajectories, which shall pass
through given points, and touch right lines given by position.

Let S be the common focus of the figures; AB the length of the principal axis

of any trajectory; P a point through which the trajectory should pass; and TR a A!L— E
right line which it should touch. About the centre P, with the interval AB - SP, v F P
if the orbit is an ellipsis, or AB + SP, if the orbit is an hyperbola, describe the “//PR ;
circle HG. On the tangent TR let fall the perpendicular ST, and produce the . H,/
same to V, so that TV may be equal to ST; and about V as a centre with the E\\S /i :F
interval AB describe the circle FH. In this manner, whether two points P, p, 7 G

are given, or two tangents TR, tr, or a point P and a tangent TR, we are to describe two circles. Let H be their
common intersection, and from the foci S, H, with the given axis describe the trajectory: I say, the thing is
done. For (be cause PH + SP in the ellipsis, and PH — SP in the hyperbola, is equal to the axis) the described
trajectory will pass through the point P, and (by the preceding Lemma) will touch the right line TR. And by
the same argument it will either pass through the two points P, p, or touch the two right lines TR, tr. Q.E.F.

PROPOSITION X1X. PROBLEM XI.

About a given focus, to describe a parabolic trajectory, which shall pass through given points, and touch
right lines given by position.
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Let S be the focus, P a point, and TR a tangent of the trajectory to be described. Abo
the interval PS, describe the circle FG. From the focus let fall ST perpendicular on the
the same to V, so as TV may be equal to ST. After the same manner another circle fg is
to be described, if another pointp is given; or another point v is to be found, if
another tangent tr is given; then draw the right line IF, which shall touch the two
circles FG, fg, if two points P, p are given; or pass through the two points V, v, if two
tangents TR, tr, are given: or touch the circle FG, and pass through the point V, if the
point P and the tangent TR are given. On FI let fall the perpendicular SI, and bisect

the same in K; and with the axis SK and principal vertex K describe a parabola: I say

the thing is done. For this parabola (because SK is equal to IK, and SP to FP) will pass through the point P;

and (by Cor. 3, Lem. XIV) because ST is equal to TV, and STR a right angle, it will touch the right line TR.
Q.E.F.

PROPOSITION XX. PROBLEM XII.

About a given focus to describe any trajectory given in specie which shall pass through given points, and
touch right lines given by position.

Case 1. About the focus S it is required to describe a trajectory ABC,
passing through two points B, C. Because the trajectory is given in i -

specie, the ratio of the principal axis to the distance of the foci will be K B
given. In that ratio take KB to BS, and LC to CS. About the centres B, C, ' y
with the intervals BK, CL, describe two circles; and on the rightline KL, &G A 8 ¥ LS

that touches the same in K and L, let fall the perpendicular SG; which

cut in A and a, so that GA may be to AS, and Ga to aS, as KB to BS; and with the axis Aa, and vertices A, a,
describe a trajectory: I say the thing is done. For let H be the other focus of the described figure, and seeing
GA is to AS as Ga to a8, then by division we shall have Ga — GA, or Aa to aS — AS, or SH in the same ratio,
and therefore in the ratio which the principal axis of the figure to be described has to the distance of its foci;
and therefore the described figure is of the same species with the figure which was to be described. And since
KB to BS, and LCto CS, are in the same ratio, this figure will pass through the points B, C, as is manifest
from the conic sections.

Case 2. About the focus S it is required to describe a trajectory which shall
somewhere touch two right lines TR, tr. From the focus on those tangents let
fall the perpendiculars ST, St, which produce to V, v, so that TV, tv may be
equal to TS, tS. Bisect Vv in O, and erect the indefinite perpendicular OH,
and cut the right line VS infinitely produced in K and k, so that VK be to KS,
and Vk to kS, as the principal axis of the trajectory to be described is to the
distance of its foci. On the diameter Kk describe a circle cutting OH in H; and  ; -
with the foci S, H, and principal axis equal to VH, describe a trajectory: I say, '
the thing is done. For bisecting Kk in X, and joining HX, HS, HV, Hv, because VK is to KS as Vk to kS; and
by composition, as VK + Vk to KS + kS; and by division, as Vk — VK to kS — KS, that is, as 2VX to 2KX, and
2KX to 2SX, and therefore as VX to HX and HX to SX, the triangles VXH, HXS will be similar; therefore VH
will be to SH as VX to XH; and therefore as VK to KS. Wherefore VH, the principal axis of the described
trajectory, has the same ratio to SH, the distance of the foci, as the principal axis of the trajectory which was
to be described has to the distance of its foci; and is therefore of the same species. And seeing VH, vH are
equal to the principal axis, and VS, vS are perpendicularly bisected by the right lines TR, tr, it is evident (by
Lem. XV) that those right lines touch the described trajectory. Q.E.F.

Case. 3. About the focus S it is required to describe a trajectory, which shall touch a right line TR in a given
Point R. On the right line TR let fall the perpendicular ST, which produce to V, so that TV may be equal to
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ST; join VR, and cut the right line VS indefinitely produced in K and k, ¢

Sk, as the principal axis of the ellipsis to be described to the distance of .«II """"

its foci; and on the diameter Kk describing a circle, cut the right line VR {,.-j::"f‘

produced in H; then with the foci S, H, and principal axis equal to VH, “ :x;-f

describe a trajectory: I say, the thing is done. For VH is to SH as VK to V e R"‘\s y
SK, and therefore as the principal axis of the trajectory which was to be

described to the distance of its foci (as appears from what we have demonstrated in Case 2); and therefore
the described trajectory is of the same species with that which was to be described; but that the right line TR,
by which the angle VRS is bisected, touches the trajectory in the point R, is certain from the properties of the
conic sections. Q.E.F.

Case 4. About the focus S it is required to describe a
trajectory APB that shall touch a right line TR, and pass
through any given point P without the tangent, and shall be
similar to the figure apb, described with the principal axis ab,
and foci s, h. On the tangent TR let fall the perpendicular ST,
which produce to V, so that TV may be equal to ST; and
making the angles hsq, shq, equal to the angles VSP, SVP,
about g as a centre, and with an interval which shall be to ab
as SP to VS, describe a circle cutting the figure apb in p: join ) .
sp, and draw SH such that - e ’
it may be to sh as SP is to -

sp, and may make the
angle PSH equal to the
angle psh, and the angle B
VSH equal tothe angle
psq. Then with the foci S,

H, and principal axis AB,
equal to the distance VH,
describe a conic section: I say, the thing is done; for if sv is drawn so that it shall be to sp as sh is to sq, and
shall make the angle vsp equal to the angle hsq, and the angle vsh equal to the angle psq, the triangles svh,
spq, will be similar, and therefore vh will be to pq as sh is to sg; that is (because of the similar triangles VSP,
hsq), as VS is to SP, or as ab to pq. Wherefore vh and ab are equal. But, because of the similar triangles VSH,
vsh, VH is to SH as vh to sh; that is, the axis of the conic section now described is to the distance of its foci as
the axis ab to the distance of the foci sh; and therefore the figure now described is similar to the figure aph.
But, because the triangle PSH is similar to the triangle psh, this figure passes through the point P; and
because VH is equal to its axis, and VS is perpendicularly bisected by the right line TR, the said figure
touches the right line TR. Q.E.F

LEMMA XVI.

From three given points to draw to a fourth point that is not given three right lines whose differences shall
be either given, or none at all.

Case 1. Let the given points be A, B, C, and Z the fourth point which we are to find; because of the given
difference of the lines AZ, BZ, the locus of the point Z will be an hyperbola whose foci are A and B, and
whose principal axis is the given difference. Let that axis be MN. Taking PM to MA as MN is to AB, erect PR
perpendicular to AB, and let fall ZR perpendicular to PR; then from the nature of the hyperbola, ZR will be
to AZ as MN is to AB. And by the like argument, the locus of the point Z will be another hyperbola, whose
foci are A, C, and whose principal axis is the difference between AZ and CZ; and QS a perpendicular on AC
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may be drawn, to which (QS) if from any point Z of this hyperbola a perpe
shall be to AZ as the difference between AZ and CZ is to AC. Wherefore the
ratios of ZR and ZS to AZ are given, and consequently the ratio of ZR to ZS
one to the other; and therefore if the right lines RP, SQ, meet in T, and TZ
and TA are drawn, the figure TRZS will be given in specie, and the right line
TZ, in which the point Z is somewhere placed, will be given in position.

There will be given also the right line TA, and the angle ATZ; and because
the ratios of AZ and TZ to ZS are given, their ratio to each other is given B
also; and thence will be given likewise the triangle ATZ, whose vertex is the
pointZ. Q.E.L

Case 2. If two of the three lines, for example AZ and BZ, are equal, draw the right line TZ so as to bisect the
right line AB; then find the triangle ATZ as above. Q.E.IL

Case 3. If all the three are equal, the point Z will be placed in the centre of a circle that passes through the
points A, B, C. Q.E.L.

This problematic Lemma is likewise solved in Apollonius's Book of Tactions restored by Vieta.

PROPOSITION XXI. PROBLEM XIII.

About a given focus to describe a trajectory that shall pass through given points and touch right lines given
by position.

Let the focus S, the point P, and the tangent TR be given, and suppose that
the other focus H is to be found. On the tangent let fall the perpendicular ST,
which produce to Y, so that TY may be equal to ST, and YH will be equal to the
principal axis. Join SP, HP, and SP will be the difference between HP and the
principal axis. After this manner, if more tangents TR are given, or more points
P, we shall always determine as many lines YH, or PH, drawn from the said

points Y or P, to the focus H, which either shall be equal to the axes, or differ

from the axes by given lengths SP; and therefore which shall either be equal among themselves, or shall have
given differences; from whence (by the preceding Lemma), that other focus H is given. But having the foci
and the length of the axis (which is either YH, or, if the trajectory be an ellipsis, PH + SP; or PH - SP, if it be
an hyperbola), the trajectory is given. Q.E.IL.

ScHoLIUM.

When the trajectory is an hyperbola, I do not comprehend its conjugate hyperbola under the name of this
trajectory. For a body going on with a continued motion can never pass out of one hyperbola into its
conjugate hyperbola.

The case when three points are given is more readily solved thus. Let B, C, D, be the given points. Join BC,
CD, and produce them to E, F, so as EB may be to EC as SB to SC; and FC to FD as SC to SD. On EF drawn
and produced let fall the perpendiculars SG, BH, and in GS produced indefinitely take GA to AS, and Ga to
as, as HB is to BS; then A will be the vertex, and Aa the principal axis of the trajectory; which, according as
GA is greater than, equal to, or less than AS. will be either an ellipsis, a parabola, or an hyperbola; the point a
in the first case falling on the same side of the line GF as the point A; in the second, going off to an infinite
distance; in the third, falling on the other side of the line GF. For if on GF the perpendiculars CI, DK are let
fall, IC will be to HB as EC to EB; that is, as SC to SB; and by permutation, IC to SC as HB to SB, or as GA to
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SA. And, by the like argument, we may prove that KD is to SD in the sai
lie in a conic section described about the focus S, in such manner that K
all the right lines drawn from the focus S to the several points of the I}
section, and the perpendiculars let fall from the same points on the H}—
right line GF, are in that given ratio. ¥

That excellent geometer M. De la Hire has solved this Problem
much after the same way, in his Conics, Prop. XXV., Lib. VIII.

(4
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The Mathematical Principles of Natural Philosophy

by Isaac Newton

Book 1.5
SEcTION V.

Houw the orbits are to be found when neither focus is given.

Lemma xvii.

If from any point P of a given conic section, to the four produced sides AB, CD, AC, DB, of any trapezium

ABDC inscribed in that section, as many right lines PQ, PR, PS, PT are drawn in given angles, each line to

each side; the rectangle PQ x PR of those on the opposite sides AB, CD, will be to the rectangle PS x PT of
those on the other two opposite sides AC, BD, in a given ratio.

Case 1. Let us suppose, first, that the lines drawn to one pair of opposite sides are
parallel to either of the other sides; as PQ and PR to the side AC, and PS and PT to
the side AB. And farther, that one pair of the opposite sides, as AC and BD, are
parallel betwixt themselves; then the right line which bisects those parallel sides will
be one of the diameters of the conic section, and will likewise bisect RQ. Let O be the
point in which RQ is bisected, and PO will be an ordinate to that diameter. Produce
PO to K, so that OK may be equal to PO, and OK will be an ordinate on the other side =
of that diameter. Since, therefore, the points A, B, P and K are placed in the conic
section, and PK cuts AB in a given angle, the rectangle PQK (by Prop. XVII., XIX., XXI. and XXIII., Book
III1., of Apollonius's Conics) will be to the rectangle AQB in a given ratio. But QK and PR are equal, as being
the differences of the equal lines OK, OP, and OQ, OR; whence the rectangles PQK and PQ x PR are equal,;
and therefore the rectangle PQ x PR is to the rectangle A B, that is, to the rectangle PS x PT in a given ratio.

Q.E.D

Case 2. Let us next suppose that the opposite sides AC and BD of the c
trapezium are not parallel. Draw Bd parallel to AC, and meeting as well the
right line ST in t, as the conic section in d. Join Cd cutting PQ in r, and draw S d
DM parallel to PQ, cutting Cd in M, and AB in N. Then (because of the
similar triangles BTt, DBN), Bt or PQ is to Tt as DN to NB. And so Rr is to
AQ or PSas DM to AN. Wherefore, by multiplying the antecedents by the
antecedents, and the consequents by the consequents, as the rectangle PQ x
Rr is to the rectangle PS x Tt, so will the rectangle NDM be to the rectangle A Q
ANB; and (by Case 1) so is the rectangle PQ x Pr to the rectangle PS x Pt; and by division, so is the rectangle

PQ x PR to the rectangle PS x PT. Q.E.D.
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Case 3. Let us suppose, lastly, the four lines PQ, PR, PS, PT, not to be parallel to the sides AC, AB, but any
way inclined to them. In their place draw Pgq, Pr, parallel to AC; and Ps, Pt parallel to AB; and because the
angles of the triangles PQq, PRr, PSs, PTt are given, the ratios of PQ to Pq, PR to Pr, PS to Ps, PT to Pt will
be also given; and therefore the compounded ratios PQ x PR to Pg x Pr, and PS x PT to Ps x Pt are given. But
from what we have demonstrated before, the ratio of Pq x Pr to Ps x Pt is given; and therefore also the ratio
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of PQx PRto PSx PT. Q.E.D.

Lemma xviii.

The same things supposed, if the rectangle PQ x PR of the lines drawn to the two opposite sides of the
trapezium is to the rectangle PS x PT of those drawn to the other two sides in a given ratio, the point P,
from whence those lines are drawn, will be placed in a conic section described about the trapezium.

Conceive a conic section to be described passing through the points A, B, C,
D, and any one of the infinite number of points P, as for example p; I say, the
point P will be always placed in this section. If you deny the thing, join AP
cutting this conic section somewhere else, if possible, than in P, as in b.
Therefore if from those points p and b, in the given angles to the sides of the
trapezium, we draw the right lines pq, pr, ps, pt, and bk, bn, bf, bd, we shall
have, as bk x bn to bf x bd, so (by Lem. XVII) pq x pr to ps x pt; and so (by
supposition) PQ x PR to PS x PT. And because of the similar trapezia bkAf, \ L
PQAS, asbk tobf, so PQ to PS. Wherefore by dividing the terms of the Al g £Q D
preceding proportion by the correspondent terms of this, we shall have bn to bd as PR to PT. And therefore

the equiangular trapezia Dnbd, DRPT, are similar, and consequently their diagonals Db, DP do coincide.
Wherefore b falls in the intersection of the right lines AP, DP, and consequently coincides with the point P.
And therefore the point P, wherever it is taken, falls to be in the assigned conic section. Q.E.D.

Cor. Hence if three right lines PQ, PR, PS, are drawn from a common point P, to as many other right lines
given in position, AB, CD, AC, each to each, in as many angles respectively given, and the rectangle PQ x PR
under any two of the lines drawn be to the square of the third PS in a given ratio; the point P, from which the
right lines are drawn, will be placed in a conic section that touches the lines AB, CD in A and C; and the
contrary. For the position of the three right lines AB, CD, AC remaining the same, let the line BD approach to
and coincide with the line AC; then let the line PT come likewise to coincide with the line PS; and the
rectangle PS x PT will become PS2, and the right lines AB, CD, which before did cut the curve in the points A
and B, C and D, can no longer cut, but only touch, the curve in those coinciding points.

Scholium.

In this Lemma, the name of conic section is to be understood in a large
sense, comprehending as well the rectilinear section through the vertex of the
cone, as the circular one parallel to the base. For if the point p happens to be
in a right line, by which the points A and D, or C and B are joined, the conic
section will be changed into two right lines, one of which is that right line
upon which the point p falls, and the other is a right line that joins the other
two of the four points. If the two opposite angles of the trapezium taken

together are equal to two right angles, and if the four lines PQ, PR, PS, PT, are \ B
drawn to the sides thereof at right angles, or any other equal angles, and the Al g 4AQ D
rectangle PQ x PR under two of the lines drawn PQ and PR, is equal to the rectangle PS x PT under the other

two PS and PT, the conic section will become a circle. And the same thing will happen if the four lines are
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drawn in any angles, and the rectangle PQ x PR, under one pair of the lines drawn, is to the rectangle PS x
PT under the other pair as the rectangle under the sines of the angles S, T, in which the two last lines PS, PT
are drawn to the rectangle under the sines of the angles Q, R, in which the first two PQ, PR are drawn. In all
other cases the locus of the point P will be one of the three figures which pass commonly by the name of the
conic sections. But in room of the trapezium ABCD, we may substitute a quadrilateral figure whose two
opposite sides cross one another like diagonals. And one or two of the four points A, B, C, D may be
supposed to be removed to an infinite distance, by which means the sides of the figure which converge to
those points, will become parallel; and in this case the conic section will pass through the other points, and
will go the same way as the parallels in infinitum.

Lemma xix.

To find a point P _from which if four right lines PQ, PR, PS, PT are drawn to as many other right lines AB,
CD, AC, BD, given by position, each to each, at given angles, the rectangle PQ x PR, under any two of the
lines drawn, shall be to the rectangle PS x PT, under the other two, in a given ratio.

Suppose the lines AB, CD, to which the two right lines PQ, PR, containing
one of the rectangles, are drawn to meet two other lines, given by position, in
the points A, B, C, D. From one of those, as A, draw any right line AH, in
which you would find the point P. Let this cut the opposite lines BD, CD, in H
and I; and, because all the angles of the figure are given, the ratio of PQ to PA,
and PA to PS, and therefore of PQ to PS, will be also given. Subducting this
ratio from the given ratio of PQ x PR to PS x PT, the ratio of PR to PT will be
given; and adding the given ratios of PI to PR, and PT to PH, the ratio of PI to
PH, and therefore the point P will be given. Q.E.L

Cor. 1. Hence also a tangent may be drawn to any point D of the locus of all the points P. For the chord PD,
where the points P and D meet, that is, where AH is drawn through the point D, becomes a tangent. In which
case the ultimate ratio of the evanescent lines IP and PH will be found as above. Therefore draw CF parallel
to AD, meeting BD in F, and cut it in E in the same ultimate ratio, then DE will be the tangent; because CF
and the evanescent IH are parallel, and similarly cut in E and P.

Cor. 2. Hence also the locus of all the points P may be determined. Through any of the points A, B, C, D, as
A, draw AE touching the locus, and through any other point B parallel to the tangent, draw BF meeting the
locus in F; and find the point F by this Lemma. Bisect BF in G, and, drawing the indefinite line AG, this will
be the position of the diameter to which BG and FG are ordinates. Let this AG meet the locus in H, and AH
will be its diameter or latus transversum, to which the latus rectum will be as
BG2 to AG x GH. If AG nowhere meets the locus, the line AH being infinite, the
locus will be a parabola; and its latus rectum corresponding to the diameter AG

will be i—% But if it does meet it anywhere, the locus will be an hyperbola, when s
S

the points A and H are placed on the same side the point G; and an ellipsis, if the .
point G falls between the points A and H; unless, perhaps, the angle AGB is a
right angle, and at the same time BG2 equal to the rectangle AGH, in which case ‘!_;;‘-H——————-________\,___

the locus will be a circle.

And so we have given in this Corollary a solution of that famous Problem of the ancients concerning four
lines, begun by Euclid, and carried on by Apollonius; and this not an analytical calculus, but a geometrical
composition, such as the ancients required.
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Lemma xx.

If the two opposite angular points A and P of any parallelogram ASPQ touch any conic section in the
points A and P; and the sides AQ, AS of one of those angles, indefinitely produced, meet the same conic
section in B and C; and from the points of concourse B and C to any fifth point D of the conic section, two
right lines BD, CD are drawn meeting the two other sides PS, PQ of the parallelogram, indefinitely
produced in T and R; the parts PR and PT, cut off from the sides, will always be one to the other in a given
ratio. And vice versa, if those parts cut off are one to the other in a given ratio, the locus of the point D will
be a conic section passing through the four points A, B, C, P.

Case 1. Join BP, CP, and from the point D draw the two right lines DG,
DE, of which the first DG shall be parallel to AB, and meet PB, PQ, CA in
H, I, G; and the other DE shall be parallel to AC, and meet PC, PS, AB, in F,
K, E; and (by Lem. XVII) the rectangle DE x DF will be to the rectangle DG
x DH in a given ratio. But PQ is to DE (or IQ) as PB to HB, and
consequently as PT to DH; and by permutation PQ is to PT as DE to DH.
Likewise PR is to DF as RC to DC, and therefore as (IG or) PS to DG; and
by permutation PRis to PS as DF to DG; and, by compounding those
ratios, the rectangle PQ x PR will be to the rectangle PS x PT as the
rectangle DE x DF is to the rectangle DG x DH, and consequently in a given
ratio. But PQ and PS are given, and therefore the ratio of PR to PT is given. Q.E.D.

Case 2. But if PR and PT are supposed to be in a given ratio one to the other, then by going back again, by

a like reasoning, it will follow that the rectangle DE x DF is to the rectangle DG x DH in a given ratio; and so

the point D (by Lem. XVIII) will lie in a conic section passing through the points A, B, C, P, as its locus.
Q.E.D.

Cor. 1. Hence if we draw BC cutting PQ in r and in PT take Pt to Pr in the same ratio which PT has to PR;
then Bt will touch the conic section in the point B. For suppose the point D to coalesce with the point B, so
that the chord BD vanishing, BT shall become a tangent, and CD and BT will coincide with CB and Bt.

Cor. 2. And, vice versa, if Bt is a tangent, and the lines BD, CD meet in any point D of a conic section, PR
will be to PT as Prto Pt. And, on the contrary, if PR is to PT as Pr to Pt, then BD and CD will meet in some
point D of a conic section.

Cor. 3. One conic section cannot cut another conic section in more than four points. For, if it is possible, let
two conic sections pass through the five points A, B, C, P, O; and let the right line BD cut them in the points
D, d, and the right line Cd cut the right line PQ in g. Therefore PR is to PT as Pq to PT: whence PR and Pq
are equal one to the other, against the supposition.

Lemma xxi.

If two moveable and indefinite right lines BM, CM drawn through given points B, C, as poles, do by their
point of concourse M describe a third right line MN given by position; and other two indefinite right lines
BD, CD are drawn, making with the former two at those given points B, C, given angles, MBD, MCD: I say,
that those two right lines BD, CD will by their point of concourse D describe a conic section passing
through the points B, C. And, vice versa, if the right lines BD, CD do by their point of concourse D describe
a conic section passing through the given points B, C, A, and the angle DBM Is always equal to the given
angle ABC, as well as the angle DCM always equal to the given angle ACB, the point M will lie in a right
line given by position,as its locus.
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For in the right line MN let a point N be given, and when the move ™~
point N. let the moveable point D fall on an immovable point P. Join
CN, BN, CP, BP, and from the point P draw the right lines PT, PR
meeting BD, CD in T and R, and making the angle BPT equal to the
given angle BNM, and the angle CPR equal to the given angle CNM.
Wherefore since (by supposition) the angles MBD, NBP are equal, as
also the angles MCD, NCP, take away the angles NBD and NCD that
are common, and there will remain the angles NBM and PBT, NCM
and PCR equal; and therefore the triangles NBM, PBT are similar, as
also the triangles NCM, PCR. Wherefore PT is to NM as PB to NB;
and PR to NM as PC to NC. But the points, B, C, N, P are immovable:

And, vice versa, if the moveable point D lies in a conic section
passing through the given points B, C, A; and the angle DBM is
always equal to the given angle ABC, and the angle DCM always
equal to the given angle ACB, and when the point D falls successively
on any two immovable points p, P, of the conic section, the moveable
point M falls successively on two immovable points n, N. Through
these pointsn, N, draw the right line nN': this line nN will be the

perpetual locus of that moveable point M. For, if possible, let the
point M be placed in any curve line. Therefore the point D will be

placed in a conic section passing through the five points B, C, A, p, P,
when the point M is perpetually placed in a curve line. But from what
was demonstrated before, the point D will be also placed in a conic section passing through the same five
points B, C, A, p, when the point M is perpetually placed in a right line. Wherefore the two conic sections will
both pass through the same five points, against Corol. 3, Lem. XX. It is therefore absurd to suppose that the
point M is placed in a curve line. Q.E.D.

Proposition xxii. Problem xiv.

To describe a trajectory that shall pass through five given points.

Let the five given points be A, B, C, P, D. From any one of them, as A, to

any other two as B, C, which may be called the poles, draw the right lines Y S 't £
AB, AC, and parallel to those the lines TPS, PRQ, through the fourth point > ke ”
P. Then from the two poles B, C, draw through the fifth point D two E\ il
indefinite lines BDT, CRD, meeting with the last drawn lines TPS, PRQ \ D
(the former with the former, and the latter with the latter) in T and R. ) '\“)” 4]
Then drawing the right line tr parallel to TR, cutting off from the right \::\_a—-——-}-%—- 3 B

lines PT, PR, any segments Pt, Pr, proportional to PT, PR; and if through

their extremities, t, r, and the poles B, C, the right lines Bt, Cr are drawn, meeting in d, that point d will be
placed in the trajectory required. For (by Lem. XX) that point d is placed in a conic section passing through
the four points A, B, C, P; and the lines Rr, Tt vanishing, the point d comes to coincide with the point D.
Wherefore the conic section passes through the five points A, B, C, P, D. Q.E.D.

The same otherwise.
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Of the given points join any three, as A, B, C; and about two of them B,
C, as poles, making the angles ABC, ACB of a given magnitude to revolve,
apply the legs BA, CA, first to the point D, then to the point P, and mark
the points M, N, in which the other legs BL, CL intersect each other in
both cases. Draw the indefinite right line MN, and let those moveable
angles revolve about their poles B, C, in such manner that the intersection,
which is now supposed to be d, of the legs BL, CL, or BM, CM, may always
fall in that indefinite right line MN; and the intersection, which is now

—

supposed to bem, of the legs BA, CA, or BD, CD, will describe the Bﬁr-
~F

e

trajectory required, PADdB. For (by Lem. XXI) the point d will be placed
in a conic section passing through the points B, C; and when the point m comes to coincide with the points L,
M, N, the point d will (by construction) come to coincide with the points A, D, P. Wherefore a conic section
will be described that shall pass through the five points A, B. C, P, D. Q.E.F.

Cor. 1. Hence a right line may be readily drawn which shall be a tangent to the trajectory in any given point
B. Let the point d come to coincide with the point B, and the right line Bd will become the tangent required.

Cor. 2. Hence also may be found the centres, diameters, and latera recta of the trajectories, as in Cor. 2,
Lem. XIX.

Scholium.

The former of these constructions will become something more simple
by joining BP, and in that line, produced, if need be, taking Bp to BP as
PR is to PT; and through p draw the indefinite right line pe parallel to
SPT, and in that line pe taking always pe equal to Pr, and draw the right
lines Be, Cr to meet in d. For since Pr to Pt, PR to PT, pB to PB, pe to Pt,
are all in the same ratio, pe and Pr will be always equal. After this
manner the points of the trajectory are most readily found, unless you
would rather describe the curve mechanically, as in the second

construction.

Proposition xxiii. Problem xv.

To describe a trajectory that shall pass through four given points, and touch a right line given by position.

Case 1. Suppose that HB is the given tangent, B the point of contact,
and C, D, P, the three other given points. Join BC, and draw PS
parallel to BH, and PQ parallel to BC; complete the parallelogram
BSPQ. Draw BD cutting SP in T, and CD cutting PQ in R. Lastly, draw
any line tr parallel to TR, cutting off from PQ, PS, the segments Pr, Pt
proportional to PR, PT respectively; and draw Cr, Bt their point of
concoursed will (by Lem. XX) always fall on the trajectoryto be
described.

1
1
1
i
i
i
i
1
'
i
i
I
1

The same otherwise.
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Let the angle CBH of a given magnitude revolve about the pole B; as also the
rectilinear radius BC, both ways produced, about the pole C. Mark the points M,
N, on which the leg BC of the angle cuts that radius when BH, the other leg
thereof, meets the same radius in the points P and D. Then drawing the indefinite
line MN, let that radius CP or CD and the leg BC of the angle perpetually meet in
this line; and the point of concourse of the other leg BH with the radius will
delineate the trajectory required.

For if in the constructions of the preceding Problem the point A comes to a
coincidence with the point B, the lines CA and CB will coincide, and the line AB,
in its last situation, will become the tangent BH; and therefore the constructions
there set down will become the same with the constructions here described.
Wherefore the concourse of the leg BH with the radius will describe a conic section passing through the
points C, D, P, and touching the line BH in the point B. Q.E.F.

Case 2. Suppose the four points B, C, D, P, given, being situated with out the tangent HI. Join each two by
the lines BD, CP meeting in G, and cutting the tangent in H and I. Cut the tangent in A in such manner that
HA may be to IA as the rectangle under a mean proportional between CG
and GP, and a mean proportional between BH and HD is to a rectangle

under a mean proportional between GD and GB, and a mean
proportional between PI and IC, and A will be the point of contact. For if
HX, a parallel to the right line PI, cuts the trajectory in any points X and
Y, the point A (by the properties of the conic sections) will come to be so
placed, that HA2 will become to AI2 in a ratio that is compounded out of
the ratio of the rectangle XHY to the rectangle BHD, or of the rectangle
CGP to the rectangle DGB; and the ratio of the rectangle BHD to the
rectangle PIC. But after the point of contact A is found, the trajectory will
be described as in the first Case. Q.E.F. But the point A may be taken either between or without the points

H and I, upon which account a twofold trajectory may be described.

Proposition xxiv. Problem xvi.

To describe a trajectory that shall pass through three given points, and touch two right lines given by
position.

Suppose HI, KL to be the given tangents and B, C, D, the given points.
Through any two of those points, as B, D, draw the indefinite right line BD
meeting the tangents in the points H, K. Then likewise through any other
two of these points, as C, D, draw the indefinite right line CD meeting the
tangents in the points I, L. Cut the lines drawn in R and S, so that HR may
be to KR as the mean proportional between BH and HD is to the mean
proportional between BK and KD; and IS to LS as the mean proportional
between CI and ID is to the mean proportional between CL and LD. But you

may cut, at pleasure, either within or between the points K and H, I and L,
or without them; then draw RS cutting the tangents in A and P, and A and P
will be the points of contact. For if A and P are supposed to be the points of contact, situated anywhere else
in the tangents, and through any of the points H, I, K, L, as I, situated in either tangent HI, a right line IY is
drawn parallel to the other tangent KL, and meeting the curve in X and Y, and in that right line there be
taken IZ equal to a mean proportional between IX and IY, the rectangle XIY or 1Z2, will (by the properties of
the conic sections) be to LP2 as the rectangle CID is to the rectangle CLD, that is (by the construction), as SI
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is to SL2, and therefore IZ is to LP as SI to SL. Wherefore the points S, P, Z, are in one right line. Moreover,

since the tangents meet in G, the rectangle XIY or I1Z2 will (by the properties of the conic sections) be to IA2

as GP2 is to GA2, and consequently IZ will be to IA as GP to GA. Wherefore the points P, Z, A, lie in one right

line, and therefore the points S, P, and A are in one right line. And the same argument will prove that the

points R, P, and A are in one right line. Wherefore the points of contact A and P lie in the right line RS. But

after these points are found, the trajectory may be described, as in the first Case of the preceding Problem.
Q.E.F.

In this Proposition, and Case 2 of the foregoing, the constructions are the same, whether the right line XY
cut the trajectory in X and Y, or not; neither do they depend upon that section. But the constructions being
demonstrated where that right line does cut the trajectory, the constructions where it does not are also
known; and therefore, for brevity's sake, I omit any farther demonstration of them.

Lemma xxii.

To transform figures into other figures of the same kind.

Suppose that any figure HGI is to be transformed. Draw, at pleasure,
two parallel lines AO, BL, cutting any third line AB, given by position, in A
and B, and from any point G of the figure, draw out any right line GD,
parallel to OA, till it meet the right line AB. Then from any given point O
in the line OA, draw to the point D the right line OD, meeting BL in d; and
from the point of concourse raise the right line dg containing any given
angle with the right line BL, and having such ratio to Od as DG has to OD;
and g will be the point in the new figure hgi, corresponding to the point G.

And in like manner the several points of the first figure will give as many

correspondent points of the new figure. If we therefore conceive the point &
G to be carried along by a continual motion through all the points of the first figure, the point g will be
likewise carried along by a continual motion through all the points of the new figure, and describe the same.
For distraction's sake, let us call DG the first ordinate, dg the new ordinate, AD the first abscissa, ad the new
abscissa; O the pole, OD the abscinding radius, OA the first ordinate radius, and Oa (by which the
parallelogram OABa is completed) the new ordinate radius.

I say, then, that if the point G is placed in a right line given by position, the point g will be also placed in a
right line given by position. If the point G is placed in a conic section, the point g will be likewise placed in a
conic section. And here I understand the circle as one of the conic sections. But farther, if the point G is
placed in a line of the third analytical order, the point g will also be placed in a line of the third order, and so
on in curve lines of higher orders. The two lines in which the points G, g, are placed, will be always of the

same analytical order. For as ad is to OA, so are Od to OD, dg to DG, and AB to AD; and therefore AD is

equal to OAx AB, and DG equal to OAX dg' Now if the point G is placed in a right line, and therefore, in any
~ad ad

equation by which the relation between the abscissa AD and the ordinate GD is expressed, those

indetermined lines AD and DG rise no higher than to one dimension, by writing this equation OA%& in

place of AD, and OA%E in place of DG, a new equation will be produced, in which the new abscissa ad and

new ordinate dg rise only to one dimension; and which therefore must denote a right line. But if AD and DG
(or either of them) had risen to two dimensions in the first equation, ad and dg would likewise have risen to
two dimensions in the second equation. And so on in three or more dimensions. The indetermined lines, ad,
dg in the second equation, and AD, DG, in the first, will always rise to the same number of dimensions; and
therefore the lines in which the points G, g, are placed are of the same analytical order.

I say farther, that if any right line touches the curve line in the first figure, the same right line transferred
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the same way with the curve into the new figure will touch that curve line in the new figure, and vice versa.
For if any two points of the curve in the first figure are supposed to approach one the other till they come to
coincide, the same points transferred will approach one the other till they come to coincide in the new figure;
and therefore the right lines with which those points are joined will be come together tangents of the curves
in both figures. I might have given demonstrations of these assertions in a more geometrical form; but I
study to be brief.

Wherefore if one rectilinear figure is to be transformed into another, we need only transfer the
intersections of the right lines of which the first figure consists, and through the transferred intersections to
draw right lines in the new figure. But if a curvilinear figure is to be transformed, we must transfer the
points, the tangents, and other right lines, by means of which the curve line is defined. This Lemma is of use
in the solution of the more difficult Problems; for thereby we may transform the proposed figures, if they are
intricate, into others that are more simple. Thus any right lines converging to a point are transformed into
parallels, by taking for the first ordinate radius any right line that passes through the point of concourse of
the converging lines, and that because their point of concourse is by this means made to go off in infinitum;
and parallel lines are such as tend to a point infinitely remote. And after the problem is solved in the new
figure, if by the inverse operations we transform the new into the first figure, we shall have the solution
required.

This Lemma is also of use in the solution of solid problems. For as often as two conic sections occur, by
the intersection of which a problem may be solved, any one of them may be transformed, if it is an hyperbola
or a parabola, into an ellipsis, and then this ellipsis may be easily changed into a circle. So also a right line
and a conic section, in the construction of plane problems, may be transformed into a right line and a circle

Proposition xxv. Problem xvii.

To describe a trajectory that shall pass through two given points, and touch three right lines given by
position.

Through the concourse of any two of the tangents one with the other, and the concourse of the third
tangent with the right line which passes through the two given points, draw an indefinite right line; and,
taking this line for the first ordinate radius, transform the figure by the preceding Lemma into a new figure.
In this figure those two tangents will become parallel to each other, and the third tangent will be parallel to
the right line that passes through the two given points. Suppose hi, kl to be
those two parallel tangents, ik the third tangent, and hl a right line parallel

thereto, passing through those points a, b, through which the conic section
ought to pass in this new figure; and completing the parallelogram hikl, let
the right lines hi, ik, kI be so cut in ¢, d, e, that hc may be to the square root of
the rectangle ahb, ic, to id, and ke to kd, as the sum of the right lines hi and kl
is to the sum of the three lines, the first whereof is the right line ik, and the
other two are the square roots of the rectangles ahb and alb; and ¢, d, e, will

&\

rectangle ahb, and ic2 toid2, and ke2 to kd2, and el2 to the rectangle alb, are all in the same ratio; and
therefore hc to the square root of ahb, ic toid, ke tokd, andel to the square root of alb, are in the

be the points of contact. For by the properties of the conic sections, hc? to the

subduplicate of that ratio; and by composition, in the given ratio of the sum of all the antecedents hi + kI, to
the sum of all the consequents v/(ahb)+ik+v/(alb). Wherefore from that given ratio we have the points of
contactc,d, e, in the new figure. By the inverted operations of the last Lemma, let those points be
transferred into the first figure, and the trajectory will be there described by Prob. XIV. Q.E.F. But
according as the points a, b, fall between the points h, [, or without them, the points ¢, d, e, must be taken
either between the points, h, i, k, [, or without them. If one of the points a, b, falls between the points h, 1,
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and the other without the points h, [, the Problem is impossible.

Proposition xxvi. Problem xviii.

To describe a trajectory that shall pass through a given point, and touch four right lines given by position.

From the common intersections, of any two of the tangents to the common

intersection of the other two, draw an indefinite right line; and taking this =
line for the first ordinate radius; transform the figure (by Lem. XXII) into a

new figure, and the two pairs of tangents, each of which before concurred in L ",

the first ordinate radius, will now become parallel. Let hi and ki, ik and hl, be O

those pairs of parallels completing the parallelogram hikl. And let p be the ) .
point in this new figure corresponding to the given point in the first figure. P-4

Through O the centre of the figure draw pq: and Oq being equal to Op, g will
be the other point through which the conic section must pass in this new 2l ”_
figure. Let this point be transferred, by the inverse operation of Lem. XXII into the first figure, and there we
shall have the two points through which the trajectory is to be described. But through those points that
trajectory may be described by Prop. XVII.

Lemma xxiii.

If two right lines, as AC, BD given by position, and terminating in given points A, B, are in a given ratio
one to the other, and the right line CD, by which the indetermined points C, D are joined is cut in Kin a
given ratio; I say, that the point K will be placed in a right line given by position.

For let the right lines AC, BD meet in E, and in BE take BG to AE as BD
is to AC, and let FD be always equal to the given line EG; and, by
construction, EC will be to GD, that is, to EF, as AC to BD, and therefore
in a given ratio; and therefore the triangle EFC will be given in kind. Let
CF be cut in L so as CL may be to CF in the ratio of CK to CD; and
because that is a given ratio, the triangle EFL will be given in kind, and

therefore the point L will be placed in the right line EL given by position.
Join LK, and the triangles CLK, CFD will be similar; and because FDisa E H G W
given line, and LK is to FD in a given ratio, LK will be also given. To this let EH be taken equal, and ELKH

will be always a parallelogram. And therefore the point K is always placed in the side HK (given by position)
of that parallelogram. Q.E.D.

Cor. Because the figure EFLC is given in kind, the three right lines EF, EL, and EC, that is, GD, HK, and
EC, will have given ratios to each other.

Lemma xxiv.

If three right lines, two whereof are parallel, and given by position, touch any conic section; I say, that the
semi-diameter of the section which is parallel to those two is a mean proportional between the segments of
those two that are intercepted between the points of contact and the third tangent.

Let AF, GB be the two parallels touching the conic section ADB in A and B; EF the third right line touching
the conic section in I, and meeting the two former tangents in F and G, and let CD be the semi-diameter of
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the figure parallel to those tangents; I say, that AF, CD, BG are continually

E
For if the conjugate diameters AB, DM meet the tangent FG in E and %
H, and cut one the other in C, and the parallelogram IKCL be completed; L 4
from the nature of the conic sections, EC will be to CA as CA to CL; and
so by division, EC — CA to CA - CL, or EA to AL; and by composition, EA
to EA + AL or EL, as EC to EC + CA or EB; and therefore (because of the
similitude of the triangles EAF, ELI, ECH, EBG) AF is to LI as CH to BG.
Likewise, from the nature of the conic sections, LI (or CK) is to CD as CD
to CH; and therefore (ex aequo perturbate) AF is to CD as CD to BG. - QB

Q.E.D.

Cor. 1. Hence if two tangents FG, PQ, meet two parallel tangents AF, BG in F and G, P and Q, and cut one
the other in O; AF (ex aequo perturbate) will be to BQ as AP to BG, and by division, as FP to GQ, and
therefore as FO to OG.

Cor. 2. Whence also the two right lines PG, FQ drawn through the points P and G, F and Q, will meet in the
right line ACB passing through the centre of the figure and the points of contact A, B.

Lemma xxv.

If four sides of a parallelogram indefinitely produced touch any conic section, and are cut by a fifth
tangent; I say, that, taking those segments of any two conterminous sides that terminate in opposite angles
of the parallelogram, either segment is to the side from which it is cut off as that part of the other
conterminous side which is intercepted between the point of contact and the third side is to the other
segment.

Let the four sides ML, IK, KL, MI, of the parallelogram MLIK
touch the F conic section in A, B, C, D; and let the fifth tangent FQ
cut those sides in F, Q, H, and E; and taking the segments ME, KQ
of the sides MI, KI, or the segments KH, MF of the sides KL, ML; I
say, that ME is to MI as BK to KQ; and KH to KL as AM to MF. For,
by Cor. 1 of the preceding Lemma, ME is to EI as (AM or) BK to
BQ; and, by composition, ME is to MI as BK to KQ. Q.E.D. Also
KH is to HL as (BK or) AM to AF; and by division, KH to KL as AM
to MF. Q.E.D.

F

Cor. 1. Hence if a parallelogram IKLM described about a given conic section is given, the rectangle KQ x
ME, as also the rectangle KH x MF equal thereto, will be given. For, by reason of the similar triangles KQH,
MFE, those rectangles are equal.

Cor. 2. And if a sixth tangent eq is drawn meeting the tangents KI, MI in g and e, the rectangle KQ x ME
will be equal to the rectangle Kqg x Me, and KQ will be to Me as Kq to ME, and by division as Qq to Ee.

Cor. 3. Hence, also, if Eq, eQ, are joined and bisected, and a right line is drawn through the points of
bisection, this right line will pass through the centre of the conic section. For since Qq is to Ee as KQ to Me,
the same right line will pass through the middle of all the lines Eq, eQ, MK (by Lem. XXIII), and the middle
point of the right line MK is the centre of the section.

Proposition xxvii. Problem xix.
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To describe a trajectory that may touch five right lines given by position.

Supposing ABG, BCF, GCD, FDE, EA to be the
tangents given by position. Bisect in M and N, AF,
BE, the diagonals of the quadrilateral figure ABFE
contained under any four of them; and (by Cor. 3, g
Lem. XXV) the right line MN drawn through the
points of bisection will pass through the centre of the

e
y
E{.
L

trajectory. Again, bisect in P and Q, the diagonals (if ™%
I may so call them) BD, GF of the quadrilateral figure =

BGDF contained under any other four tangents, and

......

the right line PQ, drawn through the points of T ]

bisection will pass through the centre of the
trajectory; and therefore the centre will be given in
the con course of the bisecting lines. Suppose it to be O. Parallel to any tangent BC draw KL at such distance
that the centre O may be placed in the middle between the parallels; this KL will touch the trajectory to be
described. Let this cut any other two tangents GCD, FDE, in L and K. Through the points Cand K, F and L,
where the tangents not parallel, GL, FK meet the parallel tangents OF, KL, draw OK, FL meeting in R; and
the right line OR drawn and produced, will cut the parallel tangents CF, KL, in the points of contact. This
appears from Cor. 2, Lem. XXIV. And by the same method the other points of contact may be found, and
then the trajectory may be described by Prob. XIV. Q.E.F.

Scholium.

Under the preceding Propositions are comprehended those Problems wherein either the centres or
asymptotes of the trajectories are given. For when points and tangents and the centre are given, as many
other points and as many other tangents are given at an equal distance on the other side of the centre. And
an asymptote is to be considered as a tangent, and its infinitely remote extremity (if we may say so) is a point
of contact. Conceive the point of contact of any tangent removed in infinitum, and the tangent will
degenerate into an asymptote, and the constructions of the preceding Problems will be changed into the
constructions of those Problems wherein the asymptote is given.

After the trajectory is described, we may find its axes and foci in this
manner. In the construction and figure of Lem. XXI, let those legs BP, CP, of
the moveable angles PBN, PCN, by the concourse of which the trajectory was
described, be made parallel one to the other; and retaining that position, let
them revolve about their poles B, C, in that figure. In the mean while let the
other legs CN, BN, of those angles, by their concourse K or k, describe the
circle BKGC. Let O be the centre of this circle; and from this centre upon the
ruler MN, wherein those legs CN, BN did concur while the trajectory was
described, let fall the perpendicular OH meeting the circle in K and L. And
when those other legs CK, BK meet in the point K that is nearest to the ruler,

the first legs CP, BP will be parallel to the greater axis, and perpendicular on the lesser; and the contrary will
happen if those legs meet in the remotest point L. Whence if the centre of the trajectory is given; the axes will
be given; and those being given, the foci will be readily found.

But the squares of the axes are one to the other as KH to LH, and thence it is easy to describe a trajectory
given in kind through four given points. For if two of the given points are made the poles C, B, the third will
give the moveable angles PCK, PBK; but those being given, the circle BGKC may be described. Then, because
the trajectory is given in kind, the ratio of OH to OK, and therefore OH itself, will be given. About the centre
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1 1. LI | 1

O, with the interval OH, describe another circle, and the right line that -
through the concourse of the legs CK, BK, when the first legs CK, BP meet
in the fourth given point, will be the ruler MN, by means of which the
trajectory may be described. Whence also on the other hand a trapezium
given in kind (excepting a few cases that are impossible) may be inscribed
in a given conic section.

There are also other Lemmas, by the help of which trajectories given in
kind may be described through given points, and touching given lines. Of

such a sort is this, that if a right line is drawn through any point given by

position, that may cut a given conic section in two points, and the distance
of the intersections is bisected, the point of bisection will touch another conic section of the same kind with
the former, and having its axes parallel to the axes of the former. But I hasten to things of greater use.

Lemma xxvi.

To place the three angles of a triangle, given both in kind and magnitude, in respect of as many rigid lines
given by position, provided they are not all parallel among themselves, in such manner that the several
angles may touch the several lines.

Three indefinite right lines AB, AC, BC, are given by position, and it is
required so to place the triangle DEF that its angle D may touch the line AB,

i
its angle E the line AC, and its angle F the line BC. Upon DE, DF, and FEF, L

describe three segments of circles DRE, DGF, EMF, capable of angles equal to \

the angles BAC, ABC, ACB respectively. But those segments are to be !‘. .

described towards such sides of the lines DE, DF, EF, that the letters DRED 7~ i p——
may turn round about in the same order with the letters BACB; the letters :Bx\_fk""f

DGFD in the same order with the letters ABCA; and the letters EMFE in the T
same order with the letters ACBA; then; completing those segments into entire circles let the two former
circles cut one the other in G, and suppose P and Q, to be their centres. Then joining GP, PQ, take Ga to AB
as GP is to PQ; and about the centre G, with the interval Ga, describe a circle that may cut the first circle
DGE in a. Join aD cutting the second circle DFG in b, aswell asaE cutting the third circle EMF in c.
Complete the figure ABCdef similar and equal to the figure abcDEF: I say, the thing is done.

For drawing Fc meeting aD in n, and joining aG, bG, QG, QD, PD, by
construction the angle EaD is equal to the angle CAB, and the angle acF
equal to the angle ACB; and therefore the triangle anc equiangular to
the triangle ABC. Wherefore the angle anc or FnD is equal to the angle
ABC, and consequently to the angle FbD; and therefore the point n falls
on the point b. Moreover the angle GPQ, which is half the angle GPD at
the centre, isequal to the angle GaD at the circumference; and the
angle GQP, which is half the angle GQD at the centre, is equal to the
complement to two right angles of the angle GbD at the circumference,

and therefore equal to the angle Gba. Upon which account the triangles
GPQ, Gab, are similar, and Ga is toab as GP to PQ; that is (by
construction), as Ga to AB. Wherefore ab and AB are equal; and

consequently the triangles abc, ABC, which we have now proved to be
similar, are also equal. And therefore since the angles D, E, F, of the triangle DEF do respectively touch the
sides ab, ac, bc of the triangle abc, the figure ABCdef may be completed similar and equal to the figure
abcDEF, and by completing it the Problem will be solved. Q.E.F.

64/296



Cor. Hence a right line may be drawn whose parts given in length may be intercepted between three right
lines given by position. Suppose the triangle DEF, by the access of its point D to the side EF, and by having
the sides DE, DF placed in directum to be changed into a right line whose given part DE is to be interposed
between the right lines AB, AC given by position; and its given part DF is to be interposed between the right
lines AB, BC, given by position; then, by applying the preceding construction to this case; the Problem will
be solved.

Proposition xxviii. Problem xx.

To describe a trajectory given both in kind and magnitude, given parts of which shall be interposed
between three right lines given by position.

Suppose a trajectory is to be described that may be similar and equal to the
curve line DEF, and may be cut by three right lines AB, AC, BC, given by
position, into parts DE and EF, similar and equal to the given parts of this curve
line.

Draw the right lines DE, EP, DF: and place the angles
D, E, F, of this triangle DEF, so as to touch those right -
lines given by position (by Lem. XXVI). Then about the

triangle describe the trajectory, similar and equal to the
curve DEF. Q.E.F.

Lemma xxvii.

To describe a trapezium given in kind, the angles whereof may be so placed, in respect of four right lines
given by position, that are neither all parallel among themselves, nor converge to one common point, that
the several angles may touch the several lines.

Let the four right lines ABC, AD, BD, CE, be given by position; the first cutting the
second in A, the third in B, and the fourth in C; and suppose a trapezium fghi is to be
described that may be similar to the trapezium FGHI, and whose angle f, equal to the
given angle F, may touch the right line ABC; and the other angles g, h, i, equal to the
other given angles, G, H, I, may touch the other lines AD, BD, CE, respectively. Join
FH, and upon FG, FH, FI describe as many segments of circles FSG, FTH, FVI, the
first of which FSG may be capable of an angle equal to the angle BAD; the second
FTH capable of an angle equal to the angle CBD; and the third FVI of an angle equal
to the angle ACE. But the segments are to be described towards those sides of the £
lines FG, FH, FI, that the circular order of the letters FSGF may be the same as of the
letters BADB, and that the letters FTHF may turn about in the same order as the
letters CBDC and the letters FVIF in the game order as the letters ACEA. Complete
the segments into entire circles, and let P be the centre of the first circle FSG, Q the

centre of the second FTH. Join and produce both ways the line PQ, and in it take QR in the same ratio to PQ
as BC has to AB. But QR is to be taken towards that side of the point Q, that the order of the letters P, Q, R
may be the same as of the letters A, B, C; and about the centre R with the interval RF describe a fourth circle
FNc cutting the third circle FVI in c. Join Fc cutting the first circle in a, and the second in b. Draw aG, bH, cI,
and let the figure ABCfghi be made similar to the figure abcFGHI; and the trapezium fghi will be that which
was required to be described.

For let the two first circles FSG, FTH cut one the other in K; join PK, QK, RK, aK, bK, cK, and produce QP
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to L. The angles FaK, FbK, FcK at the circumferences are the halves
of the angles FPK, FQK, FRK, at the centres, and therefore equal to
LPK, LQK, LRK, the halves of those angles. Wherefore the figure
PQRK is equiangular and similar to thefigureabcK, and
consequently ab is to bc as PQ to QR, that is, as AB to BC. But by
construction, the angles fAg, fBh, fCi, are equal to the angles FaG,
FbH, Fcl. And therefore the figure ABCfghi may be completed
similar to the figure abcFGHI. Which done a trapezium fghi will be
constructed similar to the trapezium FGHI, and which by its angles
f, g, h, i will touch the right lines ABC, AD, BD, CE. Q.E.F.

Cor. Hence a right line may be drawn whose parts intercepted in a
given order, between four right lines given by position, shall have a

given proportion among themselves. Let the angles FGH, GHI, be so
far increased that the right lines FG, GH, HI, may lie in directum; and by constructing the Problem in this
case, a right line fghi will be drawn, whose parts fg, gh, hi, intercepted between the four right lines given by
position, AB and AD, AD and BD, BD and CE, will be one to another asthe lines FG, GH, HI, and will
observe the same order among them selves. But the same thing may be more readily done in this manner.

Produce AB to K and BD to L, so as BK may be to AB as HI to
GH; and DL to BD as GI to FG; and join KL meeting the right
line CE in 1. Produce iL to M, so as LM may be to iL as GH to HI;
then draw MQ parallel to LB, and meeting the right line AD in g,
and join gi cutting AB, BD in f, h; I say, the thing is done.

For let Mg cut the right line AB in Q, and AD the right line KL
in S, and draw AP parallel to BD, and meeting iL in P, and gM to
Lh (gi to hi, Mi to Li, GI to HI, AK to BK) and AP to BL, will be _
in the same ratio. Cut DL in R, so as DL to RL may be in that
same ratio; and because gS to gM, AS to AP, and DS to DL are '
proportional; therefore (ex aequo) as gS to Lh, so will AS be to BL, and DS to RL; and mixtly, BL. - RL to Lh
- BL, as AS — DS to gS — AS. That is, BR is to Bh as AD is to Ag, and therefore as BD to gQ. And alternately
BRis to BD as Bh to gQ, or as fh to fg. But by construction the line BL was cut in D and R in the same ratio
as the line FI in G and H; and therefore BR is to BD as FH to FG. Wherefore fh is to fg as FH to FG. Since,
therefore, gi to hi likewise is as Mi to Li, that is, as GI to HI, it is manifest that the lines FI, fi, are similarly
cutin Gand H, g and h. Q.E.F.

In the construction of this Corollary, after the line LK is drawn cutting CE in i, we may produce iE to V, so
as EV may be to Ei as FH to HI, and then draw V fparallel to BD. It will come to the same, if about the centre
i with an interval IH, we describe a circle cutting BD in X, and produce iX to Y so as iY may be equal to IF,
and then draw Yf parallel to BD.

Sir Christopher Wren and Dr. Wallis have long ago given other solutions of this Problem.

Proposition xxix. Problem xxi.

To describe a trajectory given in kind, that may be cut by four right lines given by position, into parts given
in order, kind, and proportion.

Suppose a trajectory is to be described that may be similar to the curve line FGHI, and whose parts,
similar and proportional to the parts FG, GH, HI of the other, may be intercepted between the right lines AB
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and AD, AD, and BD, BD and CE given by position, viz., the first between the first pa™ \!
second between the second, and the third between the third. Draw the right lines FG, n
GH, HI, FI; and (by Lem. XXVII) describe a trapezium fghi that may be similar to the
trapezium FGHI, and whose angles f, g, h, i, may touch the right lines given by position

AB, AD, BD, CE, severally according to their order. And then about this trapezium f.
describe a trajectory, that trajectory will be similar to the curve line FGHI.

L

Scholium.

This problem may be likewise constructed in the following manner. Joining FG, GH, HI, FI, produce GF to
V, and join FH, IG, and make the angles CAK, DAL
equal to the angles FGH, VFH. Let AK, AL meet the !
right line BD in K and L, and thence draw KM, LN, of )
which let KM make the angle AKM equal to the angle i
GHI, and be itself to AK as HI is to GH; and let LN make
the angle ALN equal to the angle FHI, and be itself to
AL as HI to FH. But AK, KM. AL, LN are
to be drawn towards those sides of the T
lines AD, AK, AL, that the letters CAKMC,
ALKA, DALND may be carried round in
the same order as the letters FGHIF; and
draw MN meeting the right line CE ini.
Make the angle iEP equal to the angle IGF, and let PE be to Ei as FG to GI; and through P draw PQf that may
with the right line ADE contain an angle PQE equal to the angle FIG, and may meet the right line AB in f,
and join fi. But PE and PQ are to be drawn towards those sides of the lines CE, PE, that the circular order of
the letters PEiP and PEQP may be the same as of the letters FGHIF; and if upon the line fi, in the same order
of letters, and similar to the trapezium FGHI, a trapezium fghi is constructed, and a trajectory given in kind

is circumscribed about it, the Problem will be solved.

So far concerning the finding of the orbits. It remains that we determine the motions of bodies in the
orbits so found.
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The Mathematical Principles of Natural Philosophy

by Isaac Newton

Book 1.6
SECTION VI.

How the motions are to be found in given orbits.

Proposition xxx. Problem xxii.

To find at any assigned time the place of a body moving in, a given parabolic trajectory.

Let S be the focus, and A the principal vertex of the parabola; and suppose 4AS x M
equal to the parabolic area to be cut off APS, which either was described by the radius
SP, since the body's departure from the vertex, or is to be described thereby before its
arrival there. Now the quantity of that area to be cut off is known from the time which
is proportional to it. Bisect AS in G, and erect the perpendicular GH equal to BM, and a

circle described about the centre H, with the interval HS, will cut the parabola in the
place P required. For letting fall PO perpendicular on the axis, and drawing PH, there 4 G §

will be

AG2 + GH2

(= HP2 = (AO - AG)2 + (PO - GH)2)

=A02 + PO2 - 2GAO + 2 GH + PO + AG2 + GHa.

Whence 2GH x PO (= AO2 + PO2 — 2GAO) = AO2 + 34P0z2. For AO2 write AO x Zg;, then dividing all the
terms by 2PO, and multiplying them by 2AS, we shall have 4/,GH xAS (=1/cAO x PO + Y2AS x PO =

‘%XPO = MXPO = to the area (APO - SPO)) = to the area APS. But GH was 3M, and

therefore 4/3GH X AS is 4AS x M. Wherefore the area cut off APS is equal to the area that was to be cut off
4AS xM. Q.E.D.

Cor. 1. Hence GH is to AS as the time in which the body described the arc AP to the time in which the body
described the arc between the vertex A and the perpendicular erected from the focus S upon the axis.

Cor. 2. And supposing a circle ASP perpetually to pass through the moving body P, the velocity of the point
H is to the velocity which the body had in the vertex A as 3 to 8; and therefore in the same ratio is the line GH
to the right line which the body, in the time of its moving from A to P, would describe with that velocity
which it had in the vertex A.

Cor. 3. Hence, also, on the other hand, the time may be found in which the body has described any
assigned arc AP. Join AP, and on its middle point erect a perpendicular meeting the right line GH in H.

Lemma xxviii.
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There is no oval figure whose area, cut off by right lines at pleasure, can be universally found by means of
equations of any number of finite terms and dimensions.

Suppose that within the oval any point is given; about which as a pole a right line is perpetually revolving
with an uniform motion, while in that right line a moveable point going out from the pole moves always
forward with a velocity proportional to the square of that right line with in the oval. By this motion that point
will describe a spiral with infinite circumgyrations. Now if a portion of the area of the oval cut off by that
right line could be found by a finite equation, the distance of the point from the pole, which is proportional to
this area, might be found by the same equation, and therefore all the points of the spiral might be found by a
finite equation also; and therefore the intersection of a right line given in position with the spiral might also
be found by a finite equation. But every right line infinitely produced cuts a spiral in an infinite number of
points; and the equation by which any one intersection of two lines is found at the same time exhibits all
their intersections by as many roots, and therefore rises to as many dimensions as there are intersections. Be
cause two circles mutually cut one another in two points, one of those intersections is not to be found but by
an equation of two dimensions, by which the other intersection may be also found. Because there may be
four intersections of two conic sections, any one of them is not to be found universally, but by an equation of
four dimensions, by which they may be all found together. For if those intersections are severally sought, be
cause the law and condition of all is the same, the calculus will be the same in every case, and therefore the
conclusion always the same; which must therefore comprehend all those intersections at once within itself,
and exhibit them all indifferently. Hence it is that the intersections of the conic scions with the curves of the
third order, because they may amount to six, come out together by equations of six dimensions; and the
intersections of two curves of the third order, because they may amount to nine, come out together by
equations of nine dimensions. Ifthis did not necessarily happen, we might reduce all solid to plane
Problems, and those higher than solid to solid Problems. But here I speak of curves irreducible in power. For
if the equation by which the curve is defined may be reduced to a lower power, the curve will not be one
single curve, but composed of two, or more, whose intersections may be severally found by different
calculusses. After the same manner the two intersections of right lines with the conic sections come out
always by equations of two dimensions; the three intersections of right lines with the irreducible curves of
the third order by equations of three dimensions; the four intersections of right lines with the irreducible
curves of the fourth order, by equations of fourdimensions; and so onin infinitum. Wherefore the
innumerable intersections of a right line with a spiral, since this is but one simple curve and not reducible to
more curves, require equations infinite in number of dimensions and roots, by which they may be all
exhibited together. For the law and calculus of all is the same. For if a perpendicular is let fall from the pole
upon that intersecting right line, and that perpendicular together with the intersecting line revolves about
the pole, the intersections of the spiral will mutually pass the one into the other; and that which was first or
nearest, after one revolution, will be the second; after two, the third; and so on: nor will the equation in the
mean time be changed but as the magnitudes of those quantities are changed, by which the position of the
intersecting line is determined. Wherefore since those quantities after every revolution return to their first
magnitudes, the equation will return to its first form; and consequently one and the same equation will
exhibit all the intersections, and will therefore have an infinite number of roots, by which they may be all
exhibited. And therefore the intersection of a right line with a spiral cannot be universally found by any finite
equation; and of consequence there is no oval figure whose area, cut off by right lines at pleasure, can be
universally exhibited by any such equation.

By the same argument, if the interval of the pole and point by which the spiral is described is taken
proportional to that part of the perimeter of the oval which is cut off; it may be proved that the length of the
perimeter cannot be universally exhibited by any finite equation. But here I speak of ovals that are not
touched by conjugate figures running out in infinitum.

Cor. Hence the area of an ellipsis, described by a radius drawn from the focus to the moving body, is not to
be found from the time given by a finite equation; and therefore cannot be determined by the description of
curves geometrically rational. Those curves I call geometrically rational, all the points whereof may be
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determined by lengths that are definable by equations; that is, by the complicated ratios of lengths. Other
curves (such as spirals, quadratrixes, and cycloids) I call geometrically irrational. For the lengths which are
or are not as number to number (according to the tenth Book of Elements) are arithmetically rational or
irrational. And therefore I cut off an area of an ellipsis proportional to the time in which it is described by a
curve geometrically irrational, in the following manner.

Proposition xxxi. Problem xxiii.

To find the place of a body moving in a given elliptic trajectory at any assigned time.

Suppose A to be the principal vertex, S
the focus, and O the centre of the ellipsis i .
APB; and let P be the place of the body to \
be found. Produce OA to G so as OG may
be to OA as OA to OS. Erect the
perpendicular GH; and about the centre O,
with the interval OG, describe the circle

GEF; and on the ruler GH, as a base,
suppose the wheel GEF to move forwards,

revolving about its axis, and in the mean *¥ K
time by its point A describing the cycloid ALI. Which done, take GK to the perimeter GEFG of the wheel, in
the ratio of the time in which the body proceeding from A described the arc AP, to the time of a whole
revolution in the ellipsis. Erect the perpendicular KL meeting the cycloid in L; then LP drawn parallel to KG
will meet the ellipsis in P, the required place of the body.

For about the centre O with the interval OA describe the semi-circle AQB, and let LP, produced, if need be,
meet the arc AQ in Q, and join SQ, OQ. Let OQ meet the arc EFG in F, and upon OQ let fall the
perpendicular SR. The area APS is as the area AQS, that is, as the difference between the sector OQA and the
triangle OQS, or as the difference of the rectangles 20Q x AQ, and ¥20Q x SR, that is, because ¥20Q is
given, as the difference between the arc AQ and the right line SR; and therefore (because of the equality of
the given ratios SR to the sine of the arc AQ, OS to OA, OA to OG, AQ to GF; and by division, AQ — SR to GF
— sine of the arc AQ) as GK, the difference between the arc GF and the sine of the arc AQ. Q.E.D.

Scholium.

But since the description of this curve is difficult, a solution by
approximation will be preferable. First, then, let there be found a
certain angle B which may be to an angle of 57,29578 degrees, which
an arc equal to the radius subtends, as SH, the distance of the foci, to
AB, the diameter of the ellipsis. Secondly, a certain length L, which
may be to the radius in the same ratio inversely. And these being

found, the Problem may be solved by the following analysis. By any £ SR O ¥ 7
construction (or even by conjecture), suppose we know P the place of

the body near its true place p. Then letting fall on the axis of the ellipsis the ordinate PR from the proportion
of the diameters of the ellipsis, the ordinate RQ of the circumscribed circle AQB will be given; which ordinate
is the sine of the angle AOQ, supposing AO to be the radius, and also cuts the ellipsis in P. It will be
sufficient if that angle is found by a rude calculus in numbers near the truth. Suppose we also know the angle
proportional to the time, that is, which is to four right angles as the time in which the body described the arc

Ap, to the time of one revolution in the ellipsis. Let this angle be N. Then take an angle D, which may be to
70/296



the angle B as the sine of the angle AOQ to the radius; and an angle E which may be to the angle N — AOQ +
D as the length L to the same length L diminished by the cosine of the angle AOQ, when that angle is less
than a right angle, or increased thereby when greater. In the next place, take an angle F that may be to the
angle B as the sine of the angle AOQ + E to the radius, and an angle G, that may be to the angle N — AOQ - E
+ F as the length L to the same length L diminished by the cosine of the angle AOQ + E, when that angle is
less than a right angle, or increased thereby when greater. For the third time take an angle H, that may be to
the angle B as the sine of the angle AOQ + E + G to the radius; and an angle I to the angle N- AOQ -E -G +
H, as thelength L is to the same length L diminished by the cosine of the angle AOQ + E + G, when that
angle is less than a right angle, or increased thereby when greater. And so we may proceed in infinitum.
Lastly, take the angle AOq equal to the angle AOQ + E + G + I +, &c. and from its cosine Or and the ordinate
pr, which is to its sine gr as the lesser axis of the ellipsis to the greater, we shall have p the correct place of
the body. When the angle N — AOQ + D happens to be negative, the sign + of the angle E must be every
where changed into —, and the sign — into +. And the same thing is to be understood of the signs of the angles
G and I, when the angles N — AOQ — E + F, and N - AOQ - E — G + H come out negative. But the infinite
series AOQ + E + G + I +, &c. converges so very fast, that it will be scarcely ever needful to proceed beyond
the second term E. And the calculus is founded upon this Theorem, that the area APS is as the difference
between the arc AQ and the right line let fall from the focus S perpendicularly upon the radius OQ.

And by a calculus not unlike, the Problem is solved in the hyperbola. Let
its centre be O, its vertex A, its focus S, and asymptote OK; and suppose the
quantity of the area to be cut off is known, as being proportional to the
time. Let that be A, and by conjecture suppose we know the position of a r
right line SP, that cuts off an area APS near the truth. Join OP, and from A
and P to the asymptote draw AI, PK parallel to the other asymptote; and by
the table of logarithms the area AIKP will be given, and equal thereto the
area OPA, which subducted from the triangle OPS, will leave the area cut
off APS. And by applying 2APS — SA, or 2A - SAPS, the double difference g T A S
of the area A that was to be cut off, and the area APS that is cut off, to the
line SN that is let fall from the focus S, perpendicular upon the tangent TP, we shall have the length of the
chord PQ. Which chord PQ is to be inscribed between A and P, if the area APS that is cut off be greater than
the area A that was to be cut off, but towards the contrary side of the point P, if otherwise: and the point Q

will be the place of the body more accurately. And by repeating the computation the place may be found
perpetually to greater and greater accuracy.

And by such computations we have a general analytical resolution of the
Problem. But the particular calculus that follows is better fitted for astronomical
purposes. Supposing AO, OB, OD, to be the semi-axis of the ellipsis, and L its latus
rectum, and D the difference betwixt the lesser semi-axis OD, and Y2L the half of

the latus rectum: let an angle Y be found, whose sine may be to the radius as the
rectangle under that difference D, and AO + OD the half sum of the axes to the -
square of the greater axis AB. Find also an angle Z, whose sine may be to the radius
as the double rectangle under the distance of the foci SH and that difference D to

triple the square of half the greater semi-axis AO. Those angles being once found, the place of the body may
be thus determined. Take the angle T proportional to the time in which the arc BP was described, or equal to
what is called the mean motion; and an angle V the first equation of the mean motion to the angle Y, the
greatest first equation, as the sine of double the angle T is to the radius; and an angle X, the second equation,
to the angle Z, the second greatest equation, as the cube of the sine of the angle T is to the cube of the radius.
Then take the angle BHP the mean motion equated equal to T + X + V, the sum of the angles T, V, X, if the
angle T is less than a right angle; or equal to T + X — V, the difference of the same, if that angle T is greater
than one and less than two right angles; and if HP meets the ellipsis in P, draw SP, and it will cut off the area
BSP nearly proportional to the time.
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This practice seems to be expeditious enough, because the angles V and X, taken in second minutes, if you
please, being very small, it will be sufficient to find two or three of their first figures. But itis likewise
sufficiently accurate to answer to the theory of the planet's motions. For even in the orbit of Mars, where the
greatest equation of the centre amounts to ten degrees, the error will scarcely exceed one second. But when
the angle of the mean motion equated BHP is found, the angle of the true motion BSP, and the distance SP,
are readily had by the known methods.

And so far concerning the motion of bodies in curve lines. But it may also come to pass that a moving body
shall ascend or descend in aright line; and I shall now go on to explain what belongs to such kind of
motions.
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The Mathematical Principles of Natural Philosophy

by Isaac Newton

Book 1.7
SECTION VII.

Concerning the rectilinear ascent and descent of bodies.

Proposition xxxii. Problem xxiv.

Supposing that the centripetal force is reciprocally proportional to the square of the distance of the places
from the centre; it is required to define the spaces which a body, falling directly, describes in given times.

Case 1. If the body does not fall perpendicularly, it will (by Cor. 1 Prop. XIII)
describe some conic section whose focus is A placed in the centre of force. Suppose
that conic section to be ARPB and its focus S. And, first, if the figure be an ellipsis,
upon the greater axis thereof AB describe the semi-circle ADB, and let the right line
DPC pass through the falling body, making right angles with the axis; and drawing
DS, PS, the area ASD will be proportional to the area ASP, and therefore also to the
time. The axis AB still remaining the same, let the breadth of the ellipsis be
perpetually diminished, and the area ASD will always remain proportional to the
time. Suppose that breadth to be diminished in infinitum; and the orbit APB in that
case coinciding with the axis AB, and the focus S with the extreme point of the axis B,
the body will descend in the right line AC, andthe area ABD will become
proportional to the time. Wherefore the space AC will be given which the body

S

B

describes in a given time by its perpendicular fall from the place A, if the area ABD is taken proportional to

the time, and from the point D the right line DC is let fall perpendicularly on the right line AB. Q.E.L

Case 2. If the figure RPB is an hyperbola, on the same principal diameter AB
describe the rectangular hyperbola BED; and because the areas CSP, CBfP, SPfB, are
severally to the several areas CSD, CBED, SDEB, in the given ratio of the heights CP,
CD, and the area SPfB is proportional to the timein which the body P will move
through the arc PfB. the area SDEB will be also proportional to that time. Let the
latus rectum ofthe hyperbola RPB be diminishedin infinitum, the latus
transversum remaining the same; and the arc PB will come to coincide with the
right line CB, and the focus S, with the vertex B, and the right line SD with the right
line BD. And therefore the area BDEB will be proportional to the time in which the
body C, by its perpendicular descent, describes the line CB. Q.E.L

Case 3. And by the like argument, if the figure RPB is a parabola, and to the same
principal vertex B another parabola BED is described, that may always remain given
while the former para bola in whose perimeter the body P moves, by having its latus

P

Al

R

rectum diminished and reduced to nothing, comes to coincide with the line CB, the parabolic segment BDEB

will be proportional to the time in which that body P or C will descend to the centre S or B. Q.E.I
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Proposition xxxiii. Theorem ix.

The things above found being supposed. I say, that the velocity of a falling body in any place C is to the
velocity of a body, describing a circle about the centre B at the distance BC, in the subduplicate ratio of AC,
the distance of the body from the remoter vertex A of the circle or rectangular hyperbola, to Y2AB, the
principal semi-diameter of the figure.

Let AB, the common diameter of both figures RPB, T .
DEB, be bisected in O; and draw the right line PT that : R
may touch the figure RPB in P, and likewise cut that P n /

common diameter AB (produced, if need be) in T; and
let SY be perpendicular to this line, and BQ to this
diameter, and suppose the latus rectum of the figure
RPB to be L. From Cor. 9, Prop. XVI, it is manifest that
the velocity of a body, moving in the line RPB about

the centre S, in any place P, is to the velocity of a body
describing a circle about the same centre, at the
distance SP, in the subduplicate ratio of the rectangle

121, x SP to SY2. For by the properties of the conic ¢ o4+
sections ACB is to CP2 as 2A0 to L, and therefore
% is equal to L. Therefore those velocities are *
to each other in the subduplicate ratio of
CP2xAOXSP 4, gy2, Moreover, by the properties of
ACB o al

the conic sections, CO is to BO as BO to TO, and (by
composition or division) as CB to BT. Whence (by division or composition) BO — or + CO will be to BO as CT

. . . CP2xAOxSP . BQ2x ACx SP
to BT, that is, AC will be to AO as CP to BQ; and therefore “ACE s equal to “SAOXBC Now

suppose CP, the breadth of the figure RPB, to be diminished in infinitum, so as the point P may come to
coincide with the point C, and the point S with the point B, and the line SP with the line BC, and the line SY
with the line BQ; and the velocity of the body now descending perpendicularly in the line CB will be to the
velocity of a body describing a circle about the centre B, at the distance BC; in the subduplicate ratio of

W to SY2, that is (neglecting the ratios of equality of SP to BC, and BQ2 to SY2), in the

subduplicate ratio of AC to AO, or Y2AB. Q.E.D.
Cor. 1. When the points B and S come to coincide, TC will become to TS as AC to AO.

Cor. 2. A body revolving in any circle at a given distance from the Centre, by its motion converted
upwards, will ascend to double its distance from the centre.

Proposition xxxiv. Theorem X.

74/296



If the figure BED is a parabola, I say, that the velocity of a falling body in any place C is equal to the
velocity by which a body may uniformly describe a circle about the centre B at half the interval BC.

For (by Cor. 7, Prop. XVI) the velocity of a body describing a parabola RPB
about the centre S, in any place P, is equal to the velocity of a body uniformly /
describing a circle about the same centre S at half the interval SP. Let the ' J/
breadth CP of the parabola be diminished in infinitum, so as the parabolic arc T,

PfB may come to coincide with the right line CB, the centre S with the vertex

B, and the interval SP with the interval BC, and the proposition will be
manifest. Q.E.D. F

Proposition xxxv. Theorem xi.

The same things supposed, I say, that the area of the figure DES, described by the indefinite radius SD, is
equal to the area which a body with a radius equal to half the latus rectum of the figure DES, by uniformly
revolving about the centre S, may describe in the same time.

",

]
bl

\
T, (]

S Al

i

oo

For suppose a body C in the smallest moment of time describes in falling the infinitely little line Cc, while
another body K, uniformly revolving about the centre S in the circle OKk, describes the arc Kk. Erect the
perpendiculars CD, cd, meeting the figure DES in D, d. Join SD, Sd, SK, Sk, and draw Dd meeting the axis AS
in T, and thereon let fall the perpendicular SY.

Case 1. If the figure DES is a circle, or a rectangular hyperbola, bisect its transverse diameter AS in O, and
SO will be half the latus rectum. And because TC is to TD as Cc to Dd, and TD to TS as CD to SY; ex aequo
TC will be to TS as CD x Cc to SY x Dd. But (by Cor. 1, Prop. XXXIII) TC is to TS as AC to AO; to wit, if in the
coalescence of the points D, d, the ultimate ratios of the lines are taken. Wherefore AC is to AO or SK as CD x
Cc to SY x Dd. Farther, the velocity of the descending body in C is to the velocity of a body describing a circle
about the centre S, at the interval SC, in the subduplicate ratio of AC to AO or SK (by Prop. XXXIII); and this
velocity is to the velocity of a body describing the circle OKk in the subduplicate ratio of SK to SC (by Cor. 6,
Prop IV); and, ex aequo, the first velocity to the last, that is, the little line Cc to the arc Kk, in the subduplicate
ratio of AC to SC, that is, in the ratio of AC to CD. Wherefore CD x Cc is equal to AC x Kk, and consequently
AC to SK as AC x Kk to SY x Dd, and thence SK x Kk equal to SY x Dd, and %2SK x Kk equal to ¥2SY x Dd,
that is, the area KSk equal to the area SDd. Therefore in every moment of time two equal particles, KSk and
SDd, of areas are generated, which, if their magnitude is diminished, and their number increased in
infinitum, obtain the ratio of equality, and consequently (by Cor. Lem. IV), the whole areas together
generated are always equal. Q.E.D.
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Case 2. But if the figure DES is a parabola, we shall find, as above, CD x C
as 2 to 1; and that therefore /4CD x Cc is equal to ¥2SY x Dd. But the
velocity of the falling body in C is equal to the velocity with which a circle
may be uniformly described at the interval ¥2SC (by Prop. XXXIV). And
this velocity to the velocity with which a circle may be described with the
radius SK, that is, the little line Cc to the arc Kk, is (by Cor. 6, Prop. IV) in
the subduplicate ratio of SK to %/2SC; that is, in the ratio of SK to %/2CD.
Wherefore /2SK x Kk is equal to /4CD x Cc, and therefore equal to ¥2SY x
Dd; that is, the area KSk is equal to the area SDd, as above. Q.E.D.

Proposition xxxvi. Problem xxv.

To determine the times of the descent of a body falling from place A.

Upon the diameter AS, the distance of the body from the centre at the beginning, describe
the semi-circle ADS, as likewise the semi-circle OKH equal thereto, about the centre S. From
any place C of the body erect the ordinate CD. Join SD, and make the sector OSK equal to the
area ASD. It is evident (by Prop. XXXV) that the body in falling will describe the space AC in
the same time in which another body, uniformly revolving about the centre S, may describe the
arc OK. Q.E.F.

Proposition xxxvii. Problem xxvi.

To define the times of the ascent or descent of a body projected upwards or downwards from a given place.

Suppose the body to go off from the given place G, in the direction of the line GS, with any velocity. In the
duplicate ratio of this velocity to the uniform velocity in a circle, with which the body may revolve about the

centre S at the given interval SG, take GA to 12AS. If that ratio is the same as of the number 2 to 1, the point
A is infinitely remote; in which case a parabola is to be described with any latus rectum to the vertex S, and
axis SG; as appears by Prop. XXXIV. But if that ratio is less or greater than the ratio of 2 to 1, in the former
case a circle, in the latter a rectangular hyperbola, is to be described on the diameter SA; as appears by Prop.
XXXIII. Then about the centre S, with an interval equal to half the latus rectum, describe the circle HKK; and
at the place G of the ascending or descending body, and at any other place C, erect the perpendiculars GI,
CD, meeting the conic section or circle in I and D. Then joining SI, SD, let the sectors HSK, HSk be made
equal to the segments SEIS, SEDS. and (by Prop. XXXV) the body G will describe the space GC in the same
time in which the body K may describe the arc Kk. Q.E.F.
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Proposition xxxviii. Theorem xii.

Supposing that the centripetal force is proportional to the altitude or distance of places from the centre. I
say, that the times and velocities of falling bodies, and the spaces which they describe, are respectively
proportional to the arcs, and the right and versed sines of the arcs.

Suppose the body to fall from any place A in the right line AS; and about the centre ,
of force S, with the interval AS, describe the quadrant of a circle AE; and let CD be the
right sine of any arc AD; and the body A will in the time AD in falling describe the
space AC, and in the place C will acquire the velocity CD.

A

C

This is demonstrated the same way from Prop. X, as Prop. XXXII was demonstrated

from Prop. XI. ]

B

Cor. 1. Hence the times are equal in which one body falling from the place A arrives at the centre S, and
another body revolving describes the quadrantal arc ADE.

Cor. 2. Wherefore all the times are equal in which bodies falling from whatsoever places arrive at the
centre. For all the periodic times of revolving bodies are equal (by Cor. 3, Prop. IV).

Proposition xxxix. Problem xxvii.

Supposing a centripetal force of any kind, and granting the quadratures of curvilinear figures; it is
required to find the velocity of a body, ascending or descending in a right line, in the several places
through which it passes; as also the time in which it will arrive at any place: and vice versa.

Suppose the body E to fall from any place A in the right line ADEC; and

from its place E imagine a perpendicular EG always erected proportional to
the centripetal force in that place tending to the centre C; and let BFG be a
curve line, the locus of the point G. Andin the beginning of the motion
suppose EG to coincide with the perpendicular AB; and the velocity of the
body in any place E will be as a right line whose square is equal to the
curvilinear area ABGE. Q.E.IL

In EG take EM reciprocally proportional to a right line whose square is
equal to the area ABGE, and let VLM he a curve line wherein the point Mis = F7) f\-

always placed, and to which the right line AB produced is an asymptote; and |
the time in which the bodyin falling describes the line AE, will be as the o
curvilinear area ABTVME. Q.E.I

For in the right line AE let there be taken the very small line DE of a given length, and let DLF be the place
of the line EMG, when the body was in D; and if the centripetal force be such, that a right line, whose square
is equal to the area ABGE, is as the velocity of the descending body, the area itself will be as the square of
that velocity; that is, if for the velocities in D and E we write V and V + I, the area ABFD will be as VV, and

the area ABGE as VV + 2VI + II; and by division, the area DFGE as 2VI + II, and therefore DFGE (i1 be as

DE
2V§EH; that is, if we take the first ratios of those quantities when just nascent, the length DF is as the

quantity %\g, and therefore also as half that quantity IXV But the time in which the body in falling

DE
describes the verv small line DE, is as that line directly and the velocity V inversely; and the force will be as

the increment I of the velocity directly and the time inversely; and therefore if we take the first ratios when

IxV

those quantities are just nascent, as DE’

that is, as the length DF. Therefore a force proportional to DF or
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EG will cause the body to descend with a velocity that is as the right line whose square is equal to the area
ABGE. Q.E.D.

Moreover, since the time in which a very small line DE of a given length may be described is as the velocity
inversely, and therefore also inversely as a right line whose square is equal to the area ABFD; and since the
line DL, and by consequence the nascent area DLME, will be as the same right line inversely, the time will be
as the area DLME, and the sum of all the times will be as the sum of all the areas; that is (by Cor. Lem. IV),
the whole time in which the line AE is described will be as the whole area ATVME. Q.E.D.

Cor. 1. Let P be the place from whence a body ought to fall, so as that, when urged by any known uniform
centripetal force (such as gravity is vulgarly supposed to be), it may acquire in the place D a velocity equal to
the velocity which another body, falling by any force whatever, hath acquired in that place D. In the
perpendicular DF let there be taken DR, which may be to DF as that uniform force to the other force in the
place D. Complete the rectangle PDRQ, and cut off the area ABFD equal to that rectangle. Then A will be the
place from whence the other body fell. For completing the rectangle DRSE,
since the area ABFD is to the area DFGE as VV to 2VI, and therefore as Y2V
to I, that is, as half the whole velocity to the increment of the velocity of the »
body falling by the unequable force; and in like manner the area PQRD to
the area DRSE as half the whole velocity to the increment of the velocity of
the body falling by the uniform force; and since those increments (by reason

D
of the equality of the nascent times) are as the generating forces, that is, as B

the ordinates DF, DR, and consequently as the nascent areas DFGE, DRSE:
therefore, ex aequo, the whole areas ABFD, PQRD will be to one another as
the halves of the whole velocities; and therefore, because the velocities are - 72 F \'
equal, they become equal also. !

Cor. 2. Whence if any body be projected either upwards or downwards
with a given velocity from any place D, and there be given the law of centripetal force acting on it, its velocity
will be found in any other place, as e, by erecting the ordinate eg, and taking that velocity to the velocity in
the place D as a right line whose square is equal to the rectangle PQRD, either increased by the curvilinear
area DFge, if the place e is below the place D, or diminished by the same area DFge, if it be higher, is to the
right line whose square is equal to the rectangle PQRD alone.

Cor. 3. The time is also known by erecting the ordinate em reciprocally proportional to the square root of
PQRD + or - DFge, and taking the time in which the body has described the line De to the time in which
another body has fallen with an uniform force from P, and in falling arrived at D in the proportion of the
curvilinear area DLme to the rectangle 2PD x DL. For the time in which a body falling with an uniform force
hath described the line PD, is to the time in which the same body has described the line PE in the
subduplicate ratio of PD to PE; that is (the very small line DE being just nascent), in the ratio of PD to PD +
12DE, or 2PD to 2PD + DE, and, by division, to the time in which the body hath described the small line DE,
as 2PD to DE, and therefore as the rectangle 2PD x DL to the area DLME; and the time in which both the
bodies described the very small line DE is to the time in which the body moving unequably hath described
the line De as the area DLME to the area DLme; and, ex aequo, the first mentioned of these times is to the
last as the rectangle 2PD x DL to the area DLme.

78/296



The Mathematical Principles of Natural Philosophy

by Isaac Newton

Book 1.8
SECTION VIII.

Of the invention of orbits wherein bodies will revolve, being acted upon by any sort of centripetal force.

Proposition xI. Theorem xiii.

If a body, acted upon by any centripetal force, is any how moved, and another body ascends or descends in
a right line, and their velocities be equal in any one case of equal altitudes, their velocities will be also equal
at all equal altitudes.

Let a body descend from A through D and E, to the centre C; and let another body move Py
from V in the curve line VIKk. From the centre C, with any distances, describe the concentric
circles DI, EK, meeting the right line AC in D and E, and the curve VIK in I and K. Draw IC
meeting KE in N, and on IK let fall the perpendicular NT; and let the interval DE or IN
between the circumferences of the circles be very small; and imagine the bodies in D and I to
have equal velocities. Then because the distances CD and CI are equal, the centripetal forces in
D and I will be also equal. Let those forces be expressed by the equal lineolae DE and IN; and
let the force IN (by Cor. 2 of the Laws of Motion) be resolved into two others, NT and IT. Then
the force NT acting in the direction of the line NT perpendicular to the path ITK of the body
will not at all affect or change the velocity of the body in that path, but only draw it aside from
a rectilinear course, and make it deflect perpetually from the tangent of the orbit, and proceed

in the curvilinear path ITKk. That whole force, therefore, will be spent in producing this effect;

C
but the other force IT, acting in the direction of the course of the body, will be all employed in

accelerating it, and in the least given time will produce an acceleration proportional to itself. Therefore the
accelerations of the bodies in D and I, produced in equal times, are as the lines DE, IT (if we take the first
ratios of the nascent lines DE, IN, IK, IT, NT); and in unequal times as those lines and the times conjunctly.
But the times in which DE and IK are described, are, by reason of the equal velocities (in D and I) as the
spaces described DE and IK, and therefore the accelerations in the course of the bodies through the lines DE
and IK are as DE and IT, and DE and IK conjunctly; that is, as the square of DE to the rectangle IT into IK.
But the rectangle IT x IK is equal to the square of IN, that is, equal to the square of DE; and therefore the
accelerations generated in the passage of the bodies from D and I to E and K are equal. Therefore the
velocities of the bodies in E and K are also equal, and by the same reasoning they will always be found equal
in any subsequent equal distances. Q.E.D.

By the same reasoning, bodies of equal velocities and equal distances from the centre will he equally
retarded in their ascent to equal distances. Q.E.D.

Cor. 1. Therefore if a body either oscillates by hanging to a string, or by any polished and perfectly smooth
impediment is forced to move in a curve line; and another body ascends or descends in a right line, and their
velocities be equal at any one equal altitude, their velocities will be also equal at all other equal altitudes. For
by the string of the pendulous body, or by the impediment of a vessel perfectly smooth, the same thing will
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be effected as by the transverse force NT. The body is neither accelerated nor retarded by it, but only is
obliged to leave its rectilinear course.

Cor. 2. Suppose the quantity P to be the greatest distance from the centre to which a body can ascend,
whether it be oscillating, or revolving in a trajectory, and so the same projected upwards from any point of a
trajectory with the velocity it has in that point. Let the quantity A be the distance of the body from the centre
in any other point of the orbit; and let the centripetal force be always as the power An-1, of the quantity A, the
index of which power n-1 is any number n diminished by unity. Then the velocity in every altitude A will be
as+/(Pa— An) and therefore will be given. For by Prop. XXXIX, the velocity of a body ascending and
descending in a right line is in that very ratio.

Proposition xli. Problem xxviii.

Supposing a centripetal force of any kind, and granting the quadratures of curvilinear figures, it is
required to find as well the trajectories in which bodies will move, as the times of their motions in the
trajectories found.

Let any centripetal force tend to the centre C, and let it be
required to find the trajectory VIKk. Let there be given the circle
VR, described from the centre C with any interval CV; and from
the same centre describe any other circles ID, KE cutting the '
trajectory in I and K, and the right line CV in D and E. Then draw
theright line CNIX cutting the circles KE, VR in N and X, and |
the right line CKY meeting the circle VR in Y. Let the points I and
K be indefinitely near; and let the body go on from V through I
and K to k; and let the point A be the place from whence another -
body is to fall, so as in the place D to acquire a velocity equal to |
the velocity of the first body in I. And things remaining as in
Prop. XXXIX, the lineola IK, described in the least given time will be as the velocity, and therefore as the
right line whose square is equal to the area ABFD, and the triangle ICK proportional to the time will be given,
and therefore KN will be reciprocally as the altitude IC; that is (if there be given any quantity Q, and the

altitude IC be called A), as % This quantity% call Z, and suppose the magnitude of Q to be such that in some
case V(ABFD) may be to Z as IK to KN, and then in all cases v/(ABFD) will be to Z as IK to KN, and ABFD to

77 as IK2 to KN2, and by division ABFD — ZZ to ZZ as IN2 to KN2, and therefore v/(ABFD - ZZ) to Z; or % as

. q QxIN . . .
IN to KN; and therefore A x KN will be equal to V(ABFD - 72 Therefore since YX x XC is to A x KN as CX2,

: QxINxCX=2 c .
to AA, the rectangle XY x XC will be equal to AAV(ABFD - 7Z)’ Therefore in the perpendicular DF let there

Q QxCX2
2v(ABFD - ZZ) 2AAV(ABFD - Z7)
ab, ac, the foci of the points b and ¢, be described: and from the point V let the perpendicular Va be erected
to the line AC, cutting off the curvilinear areas VDba, VDca, and let the ordinates Ez, Ex, be erected also.
Then because the rectangle Db x IN or DbzE is equal to half the rectangle A x KN, or to the triangle ICK; and
the rectangle Dc x IN or DcxE is equal to half the rectangle YX x XC, or to the triangle XCY; that is, because
the nascent particles DbzE, ICK of the areas VD ba, VIC are always equal; and the nascent particles DcxE,
XCY ofthe areas VDca, VCX are always equal: therefore the generated area VDba will be equal to the
generated area VIC, and therefore proportional to the time; and the generated area VDca is equal to the
generated sector VCX. If, therefore, any time be given during which the body has been moving from V, there
will be also given the area proportional to it VDba; and thence will be given the altitude of the body CD or
CI; and the area VDcaq, and the sector VCX equal thereto, together with its angle VCI. But the angle VCI, and
the altitude CI being given, there is also given the place I, in which the body will be found at the end of that
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time. Q.E.L

Cor. 1. Hence the greatest and least altitudes of the bodies, that is, the apsides of the trajectories, may be
found very readily. For the apsides are those points in which a right line IC drawn through the centre falls
perpendicularly upon the trajectory VIK; which comes to pass when the right lines IK and NK become equal;
that is, when the area ABFD is equal to ZZ.

Cor. 2. So also the angle KIN, in which the trajectory at any place cuts the line IC, may be readily found by
the given altitude IC of the body: to wit, by making the sine of that angle to radius as KN to IK that is, as Z to
the square root of the area ABFD.

Cor. 3. If to the centre C, and the principal vertex V, there be
described a conic section VRS; and from any point thereof, as R, there
be drawn the tangent RT meeting the axis CV indefinitely produced in
the point T; and then joining CR there be drawn the right line CP,
equal to the abscissa CT, making an angle VCP proportional to the
sector VCR; and if a centripetal force, reciprocally proportional to the

cubes of the distances of the places from the centre, tends to the centre
C; and from the place V there sets out a body with a just velocity in the
direction of a line perpendicular to the right line CV; that body will proceed in a trajectory VPQ, which the

point P will always touch; and therefore if the conic section VRS be an hyberbola, the body will descend to
the centre; but if it be an ellipsis, it will ascend perpetually, and go farther and farther off in infinitum. And,
on the contrary, if a body endued with any velocity goes off from the place V, and according as it begins
either to descend obliquely to the centre, or ascends obliquely from it, the figure VRS be either an hyperbola
or an ellipsis, the trajectory may be found by increasing or diminishing the angle VCP in a given ratio. And
the centripetal force becoming centrifugal, the body will ascend obliquely in the trajectory VPQ, which is
found by taking the angle VCP proportional to the elliptic sector VRC, and the length CP equal to the length
CT, as before. All these things follow from the foregoing Proposition, by the quadrature of a certain curve,
the invention of which, as being easy enough, for brevity's sake I omit.

Proposition xlii. Problem xxix.

The law of centripetal force being given, it is required to find the motion of a body setting out from a given
place, with a given velocity, in the direction of a given right line.

Suppose the same things as in the three preceding

propositions; and let the body go off from the place I in the K. P=p &

direction of the littleline, IK, with the same velocity as e P

another body, by falling with an uniform centripetal force .¥.- \{

from the place P, may acquire in D; and let this uniform force = ; 12 2T \R )
be to the force with which the body is at first urged in I, as DR ™ / \\
to DF. Let the body go on towards k; and about the centre C, . 3 rVad
with the interval Ck, describe the circle ke, meeting the right x ’vl ,9\

line PD ine, and letthere be erected the lineseg, ev, ew, . .

ordinately applied to the curves BFg, abv, acw. From the %

given rectangle PDRQ and the given law of centripetal force,

by which the first body is acted on, the curve line BFg is also given, by the construction of Prop. XXVII, and
its Cor. 1. Then from the given angle CIK is given the proportion of the nascent lines IK, KN; and thence, by
the construction of Prob. XXVIII, there is given the quantity Q, with the curve lines abv, acw; and therefore,
at the end of any time Dbuve, there is given both the altitude of the body Ce or Ck, and the area Dcwe, with the
sector equal to it XCy, the angle ICk, and the place k, in which the body will then be found. Q.E.IL.
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We suppose in these Propositions the centripetal force to vary in its recess from the centre according to
some law, which any one may imagine at pleasure; but at equal distances from the centre to be everywhere
the same.

I have hitherto considered the motions of bodies in immovable orbits. It remains now to add something
concerning their motions in orbits which revolve round the centres of force.

(4
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The Mathematical Principles of Natural Philosophy

by Isaac Newton

Book 1.9
SECTION IX.

Of the motion of bodies in moveable orbits; and of the motion of the apsides.

Proposition xliii. Problem xxx.

It is required to make a body move in a trajectory that revolves about the centre of force in the same
manner as another body in the same trajectory at rest.

In the orbit VPK, given by position, let the body P revolve, proceeding from V
towards K. From the centre C let there be continually drawn Cp, equal to CP, making
the angle VCp proportional to the angle VCP; and the area which the line Cp
describes will be to the area VCP, which the line CP describes at the same time, as the i
velocity of the describing line Cp to the velocity of the describing line CP; that is, as
the angle VCp to the angle VCP, therefore in a given ratio, and therefore proportional

to the time. Since, then, the area described by the line Cp in an immovable plane is

proportional to the time, it is manifest that a body, being acted upon by a just
quantity of centripetal force may revolve with the point p in the curve line which the
same point p, by the method just now explained, may be made to describe an immovable plane. Make the
angle VCu equal to the angle PCp, and the line Cu equal to CV, and the figure uCp equal to the figure VCP,
and the body being always in the point p, will move in the perimeter of the revolving figure uCp, and will
describe its (revolving) arc up in the same time that the other body P describes the similar and equal arc VP
in the quiescent figure VPK. Find, then, by Cor. 5, Prop. VI., the centripetal force by which the body may be
made to revolve in the curve line which the point p describes in an immovable plane, and the Problem will be
solved. Q.E.F.

Proposition xliv. Theorem xiv.

The difference of the forces, by which two bodies may be made to move equally, one in a quiescent, the
other in the same orbit revolving, is in a triplicate ratio of their common altitudes inversely.

Let the parts of the quiescent orbit VP, PK be similar and equal to the parts of the revolving orbit up, pk;
and let the distance of the points P and K be supposed of the utmost smallness. Let fall a perpendicular kr
from the point k to the right line pC, and produce it to m, so that mr may be to kr as the angle VCp to the
angle VCP. Because the altitudes of the bodies PC and pC, KC and kC, are always equal, it is manifest that the
increments or decrements of the lines PC and pC are always equal; and therefore if each of the several
motions of the bodies in the places P and p be resolved into two (by Cor. 2 of the Laws of Motion), one of
which is directed towards the centre, or according to the lines PC, pC, and the other, transverse to the
former, hath a direction perpendicular to the lines PC and pC; the motions towards the centre will be equal,
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and the transverse motion of the body p will be to the transverse i
of the line pC to the angular motion of the line PC; that is, as the
angle VCp to the angle VCP. Therefore, at the same time that the
body P, by both its motions, comes to the point K, the body p,
having an equal motion towards the centre, will be equally moved
from p towards C; and therefore that time being expired, it will i
be found somewhere in the line mkr, which, passing through the E
pointk, is perpendicular to theline pC; and by its transverse

motion will acquire a distance from the line pC, that will be to the

distance which the other body P acquires from the line PC as the
transverse motion of the body p to the transverse motion of the
other body P. Therefore since kr is equal to the distance which
the body P acquires from the line PC, and mr is to kr as the angle
VCp to the angle VCP, thatis, as the transverse motion of the

body p to the transverse motion of the body P, it is manifest that
the body p, at the expiration of that time, will be found in the
place m. These things will be so, if the bodies p and P are equally moved in the directions of the lines pC and
PC, and are therefore urged with equal forces in those directions, but if we take an angle pCn that is to the
angle pCk as the angle VCp to the angle VCP, and nC be equal to kC, in that case the body p at the expiration
of the time will really be in n; and is therefore urged with a greater force than the body P, if the angle nCp is
greater than the angle kCp, that is, if the orbit upk, move either in consequentia or in antecedentia, with a
celerity greater than the double of that with which the line CP moves in consequentia; and with a less force if
the orbit moves slower in antecedentia. And the difference of the forces will be as the interval mn of the
places through which the body would be carried by the action of that difference in that given space of time.
About the centre C with the interval Cn or Ck suppose a circle described cutting the lines mr, mn produced in
s and t, and the rectangle mn x mt will be equal to the rectangle mk x ms, and therefore mn will be equal to

mk+:ng But since the triangles pCk, pCn, in a given time, are of a given magnitude, kr and mr, and their

difference mk, and their sum ms, are reciprocally as the altitude pC, and therefore the rectangle mk x ms is
reciprocally as the square of the altitude pC. But, moreover, mt is directly as Y2mt, that is, as the altitude pC.

These are the first ratios of the nascent lines: and hence mkmLth, that is, the nascent lineola mn, and the

difference of the forces proportional thereto, are reciprocally as the cube of the altitude pC. Q.E.D.

Cor. 1. Hence the difference of the forces in the places P and p, or K and k, is to the force with which a body

may revolve with a circular motion from R to K, in the same time that the body P in an immovable orb

describes the arc PK, as the nascent line mn to the versed sine of the nascent arc RK, that is, as mk x ms to

rka
a2kC’

another as the angle VCP bears to the angle VCp, as GG — FF to FF. And, therefore, if from the centre C, with
any distance CP or Cp, there be described a circular sector equal to the whole area VPC, which the body

or as mk x ms to the square of rk; that is, if we take given quantities F and G in the same ratio to one

revolving in an immovable orbit has by a radius drawn to the centre described in any certain time, the
difference of the forces, with which the body P revolves in an immovable orbit, and the body p in a movable
orbit, will be to the centripetal force, with which another body by a radius drawn to the centre can uniformly
describe that sector in the same time as the area VPC is described, as GG — FF to FF. For that sector and the
area pCk are to one another as the times in which they are described.

Cor. 2. If the orbit VPK be an ellipsis, having its focus C, and its highest apsis V, and we suppose the the
ellipsis upk similar and equal to it, so that pC may be always equal to PC, and the angle VCp be to the angle

VCP in the given ratio of G to F; and for the altitude PC or pC we put A, and 2R for the latus rectum of the

FF
ellipsis, the force with which a body may be made to revolve in a movable ellipsis will be as AA+RGG - RFF,

A3
and vice versa. Let the force with which a body may revolve in an immovable ellipsis be expressed by the
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quantity g, and the force in V will be ¥E . But the force with

Cvz’
which a body may revolve in a circle at the distance CV, with the

same velocity as a body revolving in an ellipsis has in V, is to the
force with which a body revolving in an ellipsis is acted upon in

the apsis V, as half the latus rectum of the ellipsis to the semi- i
RFF,
Cvs’
which is to this, as GG - FF to FF, is asw and this

force (by Cor. 1 of this Prop.) is the difference of the forces in V,

diameter CV of the circle, and therefore is as and the force

with which the body P revolves in the immovable ellipsis VPK,
and the body p in the movable ellipsis upk. Therefore since by
this Prop, that difference at any other altitude A is to itself at the

altitude CV as ;o to W’ the same difference in every altitude A

will be as w Therefore to the force E by which the
RGG - RFF
A3

body may revolve in an immovable ellipsis VPK add the excess , and the sum will be the whole

FF
force AA+RGG — RFF by which a body may revolve in the same time in the movable ellipsis upk.
A3

Cor. 3. In the same manner it will be found, that, if the immovable orbit VPK be an ellipsis having its
centre inthe centre of the forces C, and there be supposed a movable ellipsis upk, similar, equal, and
concentrical to it; and 2R be the principal latus rectum of that ellipsis, and 2T the latus transversum, or
greater axis; and the angle VCp be continually to the angle VCP as G to F; the forces with which bodies may

FFA
revolve in the immovable and movable ellipsis, in equal times, will be as F,l}j? and T3+RGG — RFF
A3

respectively.

Cor. 4. And universally, if the greatest altitude CV of the body be called T, and the radius of the curvature
which the orbit VPK has in V, that is, the radius of a circle equally curve, be called R, and the centripetal force

with which a body may revolve in any immovable trajectory VPK at the place V be called VFF, and in other

places P be indefinitely styled X; and the altitude CP be called A, and G be taken to F in the given ratio of the
angle VCp to the angle VCP; the centripetal force with which the same body will perform the same motions

in the same time, in the same trajectory upk revolving with a circular motion, will be as the sum of the forces

X+VRGG - VRFF
A3

Cor. 5. Therefore the motion of a body in an immovable orbit being given, its angular motion round the
centre of the forces may be increased or diminished in a given ratio; and thence new immovable orbits may
be found in which bodies may revolve with new centripetal forces.

P Cor. 6. Therefore if there be erected the line VP of an indeterminate length,

[V perpendicular to the line CV given by position, and CP be drawn, and Cp equal to
it, making the angle VCp having a given ratio to the angle VCP, the force with
which a body may revolve in the curve line Vpk, which the point p is continually

¥ describing, will be reciprocally as the cube of the altitude Cp. For the body P, by
its vis inertiae alone, no other force impelling it, will proceed uniformly in the

A C right line VP. Add, then, a force tending to the centre C reciprocally as the cube of

the altitude CP or Cp, and (by what was just demonstrated) the body will deflect from the rectilinear motion

into the curve line Vpk. But this curve Vpk is the same with the curve VPQ found in Cor. 3, Prop XLI, in
which, I said, bodies attracted with such forces would ascend obliquely.
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Proposition xlv. Problem xxxi.

To find the motion of the apsides in orbits approaching very near to circles.

This problem is solved arithmetically by reducing the orbit, which a body revolving in a movable ellipsis
(as in Cor. 2 and 3 of the above Prop.) describes in an immovable plane, to the figure of the orbit whose
apsides are required; and then seeking the apsides of the orbit which that body describes in an immovable
plane. But orbits acquire the same figure. if the centripetal forces with which they are described, compared
between themselves, are made proportional at equal altitudes. Let the point V be the highest apsis, and write
T for the greatest altitude CV, A for any other altitude CP or Cp, and X for the difference of the altitudes CV —

CP; and the force with which a body moves in an ellipsis revolving about its focus C (as in Cor. 2), and which

in Cor. 2 was as E_}Z + RGG = RFF 41, i a5, FFA + RAG?,G — RFF

A3
RGG - RFFAJ; TFF - FFX 1p Jike manner any other centripetal force is to be reduced to a fraction whose

denominator is A3, and the numerators are to be made analogous by collating together the homologous

, by substituting T — X for A, will become as

terms. This will be made plainer by Examples.

Example 1. Let us suppose the centripetal force to be uniform, and therefore as A3 or, writing T — X for A

A3
Ts - 3TTXX§T}Q(_X3. Then collating together the correspondent terms of the

numerators, that is, those that consist of given quantities, with those of given quantities, and those of
quantities not given with those of quantities not given, it will become RGG — RFF + TFF to T3 as — FFX to
3TTX + 3TXX — X3, or as -FFto —3TT + 3TX — XX. Now since the orbit is supposed extremely near to a

in the numerator, as

circle, let it coincide with a circle; and because in that case Rand T become equal, and X is infinitely
diminished, the last ratios will be, as RGG to T2, so —FF to —3TT, or as GG to TT, so FF to 3TT; and again, as
GG to FF, so TT to 3TT, that is, as 1 to 3; and therefore G is to F, that is, the angle VCp to the angle VCP, as 1
to V3. Therefore since the body, in an immovable ellipsis, in descending from the upper to the lower apsis,
describes an angle, if I may so speak, of 180 deg., the other body in a movable ellipsis, and therefore in the
immovable orbit we are treating of, will in its descent from the upper to the lower apsis, describe an angle

VCp of %339 deg. And this comes to pass by reason of the likeness of this orbit which a body acted upon by an

uniform centripetal force describes, and of that orbit which a body performing its circuits in a revolving
ellipsis will describe in a quiescent plane. By this collation of the terms, these orbits are made similar; not

universally, indeed, but then only when they approach very near to a circular figure. A body, therefore

revolving with an uniform centripetal force in an orbit nearly circular, will always describe an angle of %;39

deg., or 103 deg., 55 m., 23 sec., at the centre; moving from the upper apsis to the lower apsis when it has
once described that angle, and thence returning to the upper apsis when it has described that angle again;
and so on in infinitum.

An,
A3’
where n — 3 and n signify any indices of powers whatever, whether integers or fractions, rational or surd,

Exam. 2. Suppose the centripetal force to be as any power of the altitude A, as, for example, An-3, or

affirmative or negative. That numerator An or (T — X)n being reduced to an indeterminate series by my
method of converging series, will become Tn — nXTn-1 + wXXTn—z, &c. And conferring these terms with
the terms of the other numerator RGG — RFF + TFF - FFX, it becomes as RGG - RFF + TFF to Tn, so — FF
to -nTn-1 + ¥XTH—2, &c. And taking the last ratios where the orbits approach to circles, it becomes as
RGG to Tn, so — FF to —nTn-1, or as GG to Tn-1, so FF to nTn-; and again, GG to FF, so Tn-1to nTn-1, that is,
as 1 to n; and therefore G is to F, that is the angle VCp to the angle VCP, as 1 to vn. Therefore since the angle
VCP, described in the descent of the body from the upper apsis to the lower apsis in an ellipsis, is of 180 deg.,

the angle VCp, described in the descent of the body from the upper apsis to the lower apsis in an orbit nearly
circular which a body describes with a centripetal force proportional to the power An-3, will be equal to an
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angle of %SHO deg., and this angle being repeated, the body will return from the lower to the upper apsis, and

so on in infinitum. As if the centripetal force be as the distance of the body from the centre, that is, as A, or

Ad
A b
will be equal to =2~ 180 deg., or 90 deg. Therefore the body having performed a fourth part of one revolution,

n will be equal to 4, and vn equal to 2; and therefore the angle between the upper and the lower apsis

will arrive at the 10wer apsis, and having performed another fourth part, will arrive at the upper apsis, and so
on by turns in infinitum. This appears also from Prop. X. For a body acted on by this centripetal force will

revolve in an immovable ellipsis whose centre is the centre of force. If the centripetal force is reciprocally as

the distance, that is, directly as -~ or A2 1 will be equal to 2; and therefore the angle between the upper and

A A3’
lower apsis will be %350 deg., or 127 deg., 16 min., 45 sec.; and therefore a body revolving with such a force,

will by a perpetual repetition of this angle, move alternately from the upper to the lower and from the lower

to the upper apsis for ever. So, also, if the centripetal force be reciprocally as the biquadrate root of the
1 Ar/4

Aiija oras=s, n will
180

be equal to ¥4, and Vo deg. will be equal to 360 deg.; and therefore the body parting from the upper apsis,

eleventh power of the altitude, that is, reciprocally as A11/4 , and, therefore, directly as

and from thence perpetually descending, will arrive at the lower apsis when it has completed one entire
revolution; and thence ascending perpetually, when it has completed another entire revolution, it will arrive
again at the upper apsis; and so alternately for ever.

Exam. 3. Taking m and n for any indices of the powers of the altitude, and b and c for any given numbers,

suppose the centripetal force to be as w, that is, as b into (T - X)m A; cinto (T -X)n . (by the
method of converging series above-mentioned) as
bTm-+cTn — mbXTm-mncXTn-1 + 0= WbXXTm-2 + B8 = BeXXTn-z2 o
A3
and comparing the terms of the numerators, there will arise RGG — RFF + TFF to bTm + ¢Tn as

—-FFto —-mbpTm-1 — ncTn + WbXTmﬂ + %XTH—% &c. And taking the last ratios that arise when the

orbits come to a circular form, there will come forth GG to pTm-1 + ¢Tn-1 as FF to mbTm-1 + ncTn-1; and

again, GG to FF as pTm-1 + ¢Tn-1to mbTn-1 + ncTn-1. This proportion, by expressing the greatest altitude CV
. . . mb + nc

or T arithmetically by unity, becomes, GG to FF as b + ¢ to mb + nc, and therefore as 1to bic Whence G

becomes to F, that is, the angle VCp to the angle VCP, as 1 to V %l)%élc And therefore since the angle VCP

between the upper and the lower apsis, in an immovable ellipsis, is of 180 deg., the angle VCp between the

bAm + cAn
A3

same apsides in an orbit which a body describes with a centripetal force, that is, as , will be equal

" b+c bAm — cAn
to an angle of 180 V mb + ne R R the

angle between the apsides will be found equal to 180V Lc After the same manner the Problem is solved

deg. And by the same reasoning, if the centripetal force be as

in more difficult cases. The quantity to which the centripetal force is proportional must always be resolved
into a converging series whose denominator is A3. Then the given part of the numerator arising from that
operation is to be supposed in the same ratio to that part of it which is not given, as the given part of this
numerator RGG — RFF + TFF — FFX is to that part of the same numerator which is not given. And taking
away the superfluous quantities, and writing unity for T, the proportion of G to F is obtained.

Cor. 1 . Hence if the centripetal force be as any power of the altitude, that power may be found from the
motion of the apsides; and so contrariwise. That is, if the whole angular motion, with which the body returns
to the same apsis, be to the angular motion of one revolution, or 360 deg., as any number as m to another as
n, and the altitude called A; the force will be as the power A."--3 of the altitude A; the index of which power

is 7—3 This appears by the second example. Hence it is plaln that the force in its recess from the centre

cannot decrease in a greater than a triplicate ratio of the altitude. A body revolving with such a force and
parting from the apsis, if it once begins to descend, can never arrive at the lower apsis or least altitude, but
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will descend to the centre, describing the curve line treated of in Cor. 3, Prop. XLI. But if it should, at its
parting from the lower apsis, begin to ascend never so little, it will ascend in infinitum, and never come to
the upper apsis; but will describe the curve line spoken of in the same Cor., and Cor. 6; Prop. XLIV. So that
where the force in its recess from the centre decreases in a greater than a triplicate ratio of the altitude, the
body at its parting from the apsis, will either descend to the centre, or ascend in infinitum, according as it
descends or ascends at the beginning of its motion. But if the force in its recess from the centre either
decreases in a less than a triplicate ratio of the altitude, or increases in any ratio of the altitude whatsoever,
the body will never descend to the centre, but will at some time arrive at the lower apsis; and, on the
contrary, if the body alternately ascending and descending from one apsis to another never comes to the
centre, then either the force increases in the recess from the centre, or it decreases in a less than a triplicate
ratio of the altitude; and the sooner the body returns from one apsis to another, the farther is the ratio of the
forces from the triplicate ratio. As if the body should return to and from the upper apsis by an alternate

descent and ascent in 8 revolutions, or in 4, or 2, or 1V2; that is, if m should be to n as 8, or 4, or 2, or 1%2 to
1, and therefore ﬁ—g, be /64 — 3, or1/i6 — 3, ori/4 — 3,0r4/¢ — 3; then the force will be as A1/e,-3; or
A1/16-3; OT A1/,-3; OT A4/o-3; that is, it will be reciprocally as As-1/64, OT A3-1/16, OT A3-1/4, OT A3-4/o. If the body
after each revolution returns to the same apsis, and the apsis remains unmoved, then m will be to n as 1 to 1,
and therefore Am/mn-3 will be equal to A-2, or 1/AA; and therefore the decrease of the forces will be in a
duplicate ratio of the altitude; as was demonstrated above. If the body in three fourth parts, or two thirds, or
one third, or one fourth part of an entire revolution, return to the same apsis; m will be to n as 34 or %s or Y3
or Y4 to 1, and therefore Am/mm-3 is equal to A16/4-3, OT A9/4-3, OT Ag-3, or A16-3; and therefore the force is
either reciprocally as A11/9, or directly as A6 or A13. Lastly if the body in its progress from the upper apsis to
the same upper apsis again, goes over one entire revolution and three deg. more, and therefore that apsis in
each revolution of the body moves three deg. in consequentia; then m will be to n as 363 deg. to 360 deg. or
as 121 to 120, and therefore Am/mm-3 Will be equal to A-20523/14641, and therefore the centripetal force will be
reciprocally as A=29523/1641, OF TeCiprocally as A24/, 45 very nearly. Therefore the centripetal force decreases in a
ratio something greater than the duplicate; but approaching 5934 times nearer to the duplicate than the

triplicate.

Cor. 2. Hence also if a body, urged by a centripetal force which is reciprocally as the square of the altitude,
revolves in an ellipsis whose focus is in the centre of the forces; and a new and foreign force should be added
to or subducted from this centripetal force, the motion of the apsides arising from that foreign force may (by

the third Example) be known; and so on the contrary. As if the force with which the body revolves in the

ellipsis be as P%A; and the foreign force subducted as cA, and therefore the remaining force as %; then

(by the third Example) b will be equal to 1. m equal to 1, and n equal to 4; and therefore the angle of

revolution between the apsides is equal to 180V/( Cc) deg. Suppose that foreign force to be 357.45 parts

1
1-4
less than the other force with which the body revolves in the ellipsis; that is, ¢ to be ;‘;25

to 1; and then 180\/(11_;42) will be 180V/( gggjg) or 180.7623, that is, 180 deg., 45 min., 44 sec. Therefore

the body, parting from the upper apsis, will arrive at the lower apsis with an angular motion of 180 deg., 45

; A or T being equal

min., 44 sec, and this angular motion being repeated, will return to the upper apsis; and therefore the upper
apsis in each revolution will go forward 1 deg., 31 min., 28 sec. The apsis of the moon is about twice as swift.

So much for the motion of bodies in orbits whose planes pass through the centre of force. It now remains
to determine those motions in eccentrical planes. For those authors who treat of the motion of heavy bodies
used to consider the ascent and descent of such bodies, not only in a perpendicular direction, but at all
degrees of obliquity upon any given planes; and for the same reason we are to consider in this place the
motions of bodies tending to centres by means of any forces whatsoever, when those bodies move in
eccentrical planes. These planes are supposed to be perfectly smooth and polished, so as not to retard the
motion of the bodies in the least. Moreover, in these demonstrations, instead of the planes upon which those
bodies roll or slide, and which are therefore tangent planes to the bodies, I shall use planes parallel to them,
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in which the centres of the bodies move, and by that motion describe orbits. And by the same method I
afterwards determine the motions of bodies performed in curve superficies.

(4
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The Mathematical Principles of Natural Philosophy

by Isaac Newton

Book 1.10
SEcTION X.

Of the motion of bodies in given superficies, and of the reciprocal motion of funependulous bodies.

Proposition xlvi. Problem xxxii.

Any kind of centripetal force being supposed, and the centre of force, and any plane whatsoever in which
the body revolves, being given, and the quadratures of curvilinear figures being allowed; it is required to
determine the motion of a body going off from a given place, with a given velocity, in the direction of a
given right line in that plane.

Let S be the centre of force, SC the least distance of that centre from
the given plane, P a body issuing from the place P in the direction of
the right line PZ, Q the same body revolving in its trajectory, and PQR
the trajectory itself which is required to be found, described in that
given plane. Join CQ, QS, and if in QS we take SV proportional to the
centripetal force with which the body is attracted towards the centre S,
and draw VT parallel to CQ, and meeting SC in T; then will the force
SV be resolved into two (by Cor. 2, of the Laws of Motion), the force
ST, and the force TV; of which ST attracting the body in the direction
of a line perpendicular to that plane, does not at all change its motion

in that plane. But the action of the other force TV, coinciding with the
position of the plane itself, attracts the body directly towards the given point C in that plane; and therefore
causes the body to move in this plane in the same manner as if the force ST were taken away, and the body
were to revolve in free space about the centre C by means of the force TV alone. But there being given the
centripetal force TV with which the body Q revolves in free space about the given centre C, there is given (by
Prop. XLII) the trajectory PQR which the body describes; the place Q, in which the body will be found at any
given time; and, lastly, the velocity of the body in that place Q. And so € contra. Q.E.IL

Proposition xlvii. Theorem xv.

Supposing the centripetal force to be proportional to the distance of the body from the centre; all bodies
revolving in any planes whatsoever will describe ellipses, and complete their revolutions in equal times;
and those which move in right lines, running backwards and forwards alternately, will complete their
several periods of going and returning in the same times.

For letting all things stand as in the foregoing Proposition, the force SV, with which the body Q revolving
in any plane PQR is attracted towards the centre S, is as the distance SQ; and therefore because SV and SQ,
TV and CQ are proportional, the force TV with which the body is attracted towards the given point C in the
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plane of the orbit is as the distance CQ. Therefore the forces with which bodies found in the plane PQR are
attracted towards the point C, are in proportion to the distances equal to the forces with which the same
bodies are attracted every way towards the centre S; and therefore the bodies will move in the same times,
and in the same figures, in any plane PQR about the point C, as they would do in free spaces about the centre
S; and therefore (by Cor. 2, Prop. X, and Cor. 2, Prop. XXXVIIL.) they will in equal times either describe
ellipses in that plane about the centre C, or move to and fro in right lines passing through the centre C in that
plane; completing the same periods of time in all cases. Q.E.D.

Scholium.

The ascent and descent of bodies in curve superficies has a near relation to these motions we have been
speaking of. Imagine curve lines to be described on any plane, and to revolve about any given axes passing
through the centre of force, and by that revolution to describe curve superficies; and that the bodies move in
such sort that their centres may be always found in those superficies. If those bodies reciprocate to and fro
with an oblique ascent and descent, their motions will be performed in planes passing through the axis, and
therefore in the curve lines, by whose revolution those curve superficies were generated. In those cases,
therefore, it will be sufficient to consider the motion in those curve lines.

Proposition xlviii. Theorem xvi.

If a wheel stands upon the outside of a globe at right angles thereto, and revolving about its own axis goes
forward in a great circle, the length of the curvilinear path which any point, given in the perimeter of the
wheel, hath described since the time that it touched the globe (which curvilinear path we may call the
cycloid or epicycloid), will be to double the versed sine of half the arc which since that time has touched the
globe in passing over it, as the sum of the diameters of the globe and the wheel to the semi-diameter of the
globe.

Proposition xlix. Theorem xvii.

If a wheel stand upon the inside of a concave globe at right angles thereto, and revolving about its own
axis go forward in one of the great circles of the globe, the length of the curvilinear path which any point,
given in the perimeter of the wheel, hath described since it touched the globe, will be to the double of the
versed sine of half the arc which in all that time has touched the globe in passing over it, as the difference of
the diameters of the globe and the wheel to the semi-diameter of the globe.

Let ABL be the globe, C its centre, BPV the wheel insisting thereon, E the centre of the wheel, B the point of
contact, and P the given point in the perimeter of the wheel. Imagine this wheel to proceed in the great circle
ABL from A through B towards L, and in its progress to revolve in such a manner that the arcs AB, PB may
be always equal one to the other, and the given point P in the perimeter of the wheel may describe in the
mean time the curvilinear path AP. Let AP be the whole curvilinear path described since the wheel touched
the globe in A, and the length of this path AP will be to twice the versed sine of the arc /2PB as 2CE to CB.
For let the right line CE (produced if need be) meet the wheel in V, and join CP, BP, EP, VP; produce CP, and
let fall thereon the perpendicular VF. Let PH, VH, meeting in H, touch the circle in P and V, and let PH cut
VF in G, and to VP let fall the perpendiculars GI, HK. From the centre C with any interval let there be
described the circle nom, cutting the right line CP in n, the perimeter of the wheel BP in o, and the
curvilinear path AP in m; and from the centre V with the interval V o let there be described a circle cutting VP
produced in q.
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Because the wheel in its pro§ress always revolves about the point of contact B, it is manifest that the right

C G
line BP is perpendicular to that curve line AP which the point P of the wheel describes, and therefore that the

right line VP will touch this curve in the point P. Let the radius of the circle nom be gradually increased or
diminished so that at last it become equal to the distance CP; and by reason of the similitude of the
evanescent figure Pnomg, and the figure PFGVI, the ultimate ratio of the evanescent lineolae Pm, Pn, Po, Pq,
that is, the ratio of the momentary mutations of the curve AP, the right line CP, the circular arc BP, and the
right line VP, will be the same as of the lines PV, PF, PG, PI, respectively. But since VF is perpendicular to
CF, and VH to CV, and therefore the angles HVG, VCF equal; and the angle VHG (because the angles of the
quadrilateral figure HVEP are right in V and P) is equal to the angle CEP, the triangles VHG, CEP will be
similar; and thence it will come to pass that as EP is to CE so is HG to HV or HP, and so KI to KP, and by
composition or division as CB to CE so is PI to PK, and doubling the consequents as CB to 2CE so PI to PV,
and so is Pq to Pm. Therefore the decrement of the line VP, that is, the increment of the line BV — VP to the
increment of the curve line AP is in a given ratio of CB to 2CE, and therefore (by Cor. Lem. IV) the lengths
BV — VP and AP, generated by those increments, are in the same ratio. But if BV be radius, VP is the cosine
of the angle BVP or /2BEP, and therefore BV — VP is the versed sine of the same angle, and therefore in this
wheel, whose radius is ¥2BV, BV — VP will be double the versed sine of the arc ¥2BP. Therefore AP is to
double the versed sine of the arc 2BP as 2CE to CB. Q.E.D.

The line AP in the former of these Propositions we shall name the cycloid without the globe, the other in
the latter Proposition the cycloid within the globe, for distinction sake.

Cor. 1. Hence if there be described the entire cycloid ASL, and the same be bisected in S, the length of the
part PS will be to the length PV (which is the double of the sine of the angle VBP, when EB is radius) as 2CE
to CB, and therefore in a given ratio.

Cor. 2. And the length of the semi-perimeter of the cycloid AS will be equal to a right line which is to the
diameter of the wheel BV as 2CE to CB.
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Proposition 1. Problem xxxiii.

To cause a pendulous body to oscillate in a given cycloid.

Let there be given within the globe QVS described with the centre C, the
cycloid QRS, bisected in R, and meeting the superficies of the globe with its
extreme points Q and S on either hand. Let there be drawn CR bisecting the
arc QS in O, and let it be produced to A in such sort that CA may be to CO as
CO to CR. About the centre C, with the interval CA, let there be described an
exterior globe DAF; and within this globe, by a wheel whose diameter is AO,
let there be described two semi-cycloids AQ, AS, touching the interior globe
in Q and S, and meeting the exterior globe in A. From that point A, with a
thread APT in length equal to the line AR, let the body T depend, and oscillate
in such manner between the two semi-cycloids AQ, AS, that, as often as the
pendulum parts from the perpendicular AR, the upper part of the thread AP
may be applied to that semi-cycloid APS towards which the motion tends, and Q
fold itself round that curve line, as if it were some solid obstacle, the
remaining part of the same thread PT which has not yet touched the semi-cycloid continuing straight. Then
will the weight T oscillate in the given cycloid QRS. Q.E.F.

For let the thread PT meet the cycloid QRS in T, and the circle QOS in V, and let CV be drawn; and to the
rectilinear part of the thread PT from the extreme points P and T let there be erected the perpendiculars BP,
TW, meeting the right line CV in B and W. It is evident, from the construction and generation of the similar
figures AS, SR, that those perpendiculars PB, TW, cut off from CV the lengths VB, VW equal the diameters of
the wheels OA, OR. Therefore TP is to VP (which is double the sine of the angle VBP when V2BV is radius) as
BWto BV, or AO + OR to AO, that is (since CA and CO, CO and CR, and by division AO and OR are
proportional), as CA + CO to CA, or, if BV be bisected in E, as 2CE to CB. Therefore (by Cor. 1, Prop. XLIX),
the length of the rectilinear part of the thread PT is always equal to the arc of the cycloid PS, and the whole
thread APT is always equal to the half of the cycloid APS, that is (by Cor. 2, Prop. XLIX), to the length AR.
And therefore contrariwise, if the string remain always equal to the length AR, the point T will always move
in the given cycloid QRS. Q.E.D.

Cor. The string AR is equal to the semi-cycloid AS, and therefore has the same ratio to AC the semi-
diameter of the exterior globe as the like semi-cycloid SR has to CO the semi-diameter of the interior globe.

Proposition li. Theorem xviii.

If a centripetal force tending on all sides to the centre C of a globe, be in all places as the distance of the
place from the centre, and by this force alone acting upon it, the body T oscillate (in the manner above
described) in the perimeter of the cycloid QRS; I say, that all the oscillations, how unequal soever in
themselves, will be performed in equal times.

For upon the tangent TW infinitely produced let fall the perpendicular CX, and join CT. Because the
centripetal force with which the body T is impelled towards C is as the distance CT, let this (by Cor. 2, of the
Laws) be resolved into the parts CX, TX, of which CX impelling the body directly from P stretches the thread
PT, and by the resistance the thread makes to it is totally employed, producing no other effect; but the other
part TX, impelling the body transversely or towards X, directly accelerates the motion in the cycloid. Then it
is plain that the acceleration of the body, proportional to this accelerating force, will be every moment as the
length TX, that is (because CV, WV, and TX, TW proportional to them are given), as the length TW, that is
(by Cor. 1, Prop. XLIX) as the length of the arc of the cycloid TR. If therefore two pendulums APT, Apt, be
unequally drawn aside from the perpendicular AR, and let fall together, their accelerations will be always as
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the arcs to be described TR, tR. But the parts described at the beginning of the
motion are as the accelerations, that is, as the wholes that are to be described at
the beginning, and therefore the parts which remain to be described, and the
subsequent accelerations proportional to those parts, are also as the wholes, and
so on. Therefore the accelerations, and consequently the velocities generated,
and the parts described with those velocities; and the parts to be described, are
always as the wholes; and therefore the parts to be described preserving a given
ratio to each other will vanish together, that is, the two bodies oscillating will
arrive together at the perpendicular AR. And since on the other hand the ascent
of the pendulums from the lowest place R through the same cycloidal arcs with a

retrograde motion, is retarded in the several places they pass through by the
same forces by which their descent was accelerated; it is plain that the velocities

of their ascent and descent through the same arcs are equal, and consequently
performed in equal times; and, therefore, since the two parts of the cycloid RS and RQ lying on either side of
the perpendicular are similar and equal, the two pendulums will perform as well the wholes as the halves of
their oscillations in the same times. Q.E.D.

Cor. The force with which the body T is accelerated or retarded in any place T of the cycloid, is to the whole
weight of the same body in the highest place S or Q as the arc of the cycloid TR is to the arc SR or QR.

Proposition lii. Problem xxxiv.

To define the velocities of the pendulums in the several places, and the times in which both the entire
oscillations, and the several parts of them are performed.

About any centre G, with the interval GH equal to the arc of the cycloid RS, describe a
semi-circle HKM bisected by the semi-diameter GK. And if a centripetal force
proportional to the distance of the places from the centre tend to the centre G, and it be
in the perimeter HIK equal to the centripetal force in the perimeter of the globe QOS
tending towards its centre, and at the same time that the pendulum T is let fall from the

highest place S, a body, as L, is let fall from H to G; then because the forces which act
upon the bodies are equal at the beginning, and always

cl proportional to the spaces to be described TR, LG, and therefore L
if TR and LG are equal, are also equal in the places T and L, it is &
plain that those bodies describe at the beginning equal spaces ST, HL, and therefore
are still acted upon equally, and continue to describe equal spaces. Therefore by ™M G L X _s

Prop. XXXVIII, the time in which the body describes the arc ST is to the time of one

oscillation, as the arc HI the time in which the body H arrives at L, to the semi-periphery HKM, the time in
which the body H will come to M. And the velocity of the pendulous body in the place T is to its velocity in
the lowest place R, that is, the velocity of the body H in the place L to its velocity in the place G; or the
momentary increment of the line HL to the momentary increment of the line HG (the arcs HI, HK increasing
with an equable flux) as the ordinate LI to the radius GK, or as v/(SR2 — TR2) to SR. Hence, since in unequal
oscillations there are described in equal time arcs proportional to the entire arcs of the oscillations, there are
obtained from the times given, both the velocities and the arcs described in all the oscillations universally.
Which was first required.

Let now any pendulous bodies oscillate in different cycloids described within different globes, whose
absolute forces are also different; and if the absolute force of any globe QOS be called V, the accelerative
force with which the pendulum is acted on in the circumference of this globe, when it begins to move directly
towards its centre, will be as the distance of the pendulous body from that centre and the absolute force of
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the globe conjunctly, that is, as CO x V. Therefore the lineola HY, which is as this accelerated force CO x V,
will be described in a given time; and if there be erected the perpendicular YZ meeting the circumference in
Z, the nascent arc HZ will denote that given time. But that nascent arc HZ is in the subduplicate ratio of the
rectangle GHY, and therefore as v/(GH x CO x V). Whence the time of an entire oscillation in the cycloid QRS
(it being as the semi-periphery HKM, which denotes that entire oscillation, directly; and as the arc HZ which
in like manner denotes a given time inversely) will be as GH directly and v/(GH x CO x V) inversely; that is,

SR AR q . .
COx V)’ or (by Cor. Prop. L,) as V( ACx V)' Therefore the oscillations in

all globes and cycloids, performed with what absolute forces soever, are in a ratio compounded of the
subduplicate ratio of the length of the string directly, and the subduplicate ratio of the distance between the
point of suspension and the centre of the globe inversely, and the subduplicate ratio of the absolute force of
the globe inversely also. Q.E.IL

because GH and SR are equal, as V/(

Cor. 1. Hence alsothe times of oscillating, falling, and revolving bodies may be compared among
themselves. For if the diameter of the wheel with which the cycloid is described within the globe is supposed
equal to the semi-diameter of the globe, the cycloid will become a right line passing through the centre of the
globe, and the oscillation will be changed into a descent and subsequent ascent in that right line. Whence
there is given both the time of the descent from any place to the centre, and the time equal to it in which the
body revolving uniformly about the centre of the globe at any distance describes an arc of a quadrant. For

this time (by Case 2) is to the time of half the oscillation in any cycloid QRS as 1 to V/( 2‘—5).

Cor. 2. Hence also follow what Sir Christopher Wren and M. Huygens have discovered concerning the
vulgar cycloid. For if the diameter of the globe be infinitely increased, its sphaerical superficies will be
changed into a plane, and the centripetal force will act uniformly in the direction of lines perpendicular to
that plane, and this cycloid of our's will become the same with the common cycloid. But in that case the
length of the arc of the cycloid between that plane and the describing point will become equal to four times
the versed sine of half the arc of the wheel between the same plane and the describing point, as was
discovered by Sir Christopher Wren. And a pendulum between two such cycloids will oscillate in a similar
and equal cycloid in equal times, as M. Huygens demonstrated. The descent of heavy bodies also in the time
of one oscillation will be the same as M. Huygens exhibited.

The propositions here demonstrated are adapted to the true constitution of the Earth, in so far as wheels
moving in any of its great circles will describe, by the motions of nails fixed in their perimeters, cycloids
without the globe; and pendulums, in mines and deep caverns of the Earth, must oscillate in cycloids within
the globe, that those oscillations may be performed in equal times. For gravity (as will be shewn in the third
book) decreases in its progress from the superficies of the Earth; upwards in a duplicate ratio of the
distances from the centre of the Earth; downwards in a simple ratio of the same.

Proposition liii. Problem xxxv.

Granting the quadratures of curvilinear figures, it is required to find the forces with which bodies moving
in given curve lines may always perform their oscillations in equal times.

Let the body T oscillate in any curve line STRQ, whose axis is AR passing through the centre of force C.
Draw TX touching that curve in any place of the body T, and in that tangent TX take TY equal to the arc TR.
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The length of that arc is known from the common methods usedfor the
quadratures of figures. From the point Y draw the right line YZ perpendicular to the
tangent. Draw CT meeting that perpendicular in Z, and the centripetal force will be
proportional to the right line TZ. Q.E.L

For if the force with which the body is attracted from T towards C be expressed
by the right line TZ taken proportional to it, that force will be resolved into two
forces TY, YZ, of which YZ drawing the body in the direction of the length of the
thread PT, does not at all change its motion; whereas the other force TY directly
accelerates or retards its motion in the curve STRQ. Wherefore since that force is as !
the space to be described TR, the accelerations or retardations of the body in

describing two proportional parts (a greater and a less) of two oscillations, will be * ¢

always as those parts, and therefore will cause those parts to be described together. But bodies which
continually describe together parts proportional to the wholes, will describe the wholes together also.
Q.E.D.

Cor. 1. Hence if the body T, hanging by a rectilinear thread AT from the centre A,
describe the circular arc STRQ, and in the mean time be acted on by any force tending
downwards with parallel directions, which is to the uniform force of gravity as the arc TR
to its sine TN, the times of the several oscillations will be equal. For because TZ, AR are
parallel, the triangles ATN, ZTY are similar; and therefore TZ will be to AT as TY to TN;
that is, if the uniform force of gravity be expressed by the given length AT, the force TZ, by
which the oscillations become isochronous, will be to the force of gravity AT, as the arc TR
equal to TY is to TN the sine of that arc.

Cor. 2. And therefore in clocks, if forces were impressed by some machine upon the pendulum which
preserves the motion, and so compounded with the force of gravity that the whole force tending downwards
should be always as a line produced by applying the rectangle under the arc TR and the radius AR to the sine
TN, all the oscillations will become isochronous.

Proposition liv. Problem xxxvi.

Granting the quadratures of curvilinear figures, it is required to find the times in which bodies by means of
any centripetal force will descend or ascend in any curve lines described in a plane passing through the
centre of force.

Let the body descend from any place S, and move in any curve STtR given in a plane passing through the
centre of force C. Join CS, and let it be divided into innumerable equal parts,
and let Dd be one of those parts. From the centre C, with the intervals CD, Cd,
let the circles DT, dt be described, meeting the curve line STtR in T and t. And
because the law of centripetal force is given, and also the altitude CS from which
the body at first fell, there will be given the velocity of the body in any other
altitude CT (by Prop. XXXIX). But the time in which the body describes the
lineola Tt is as the length of that lineola, that is, as the secant of the angle tTC

directly, and the velocity inversely. Let the ordinate DN, proportional to this
time, be made perpendicular to the right line CS at the point D, and because Dd
is given, the rectangle Dd x DN, that is, the area DNnd, will be proportional to 8
the same time. Therefore if PNn be acurve line in which the point N is lL

perpetually found, and its asymptote be the right line SQ standing upon the line
CS at right angles, the area SQPND will be proportional to the time in which the body in its descent hath
described the line ST; and therefore that area being found, the time is also given. Q.E.IL
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Proposition lv. Theorem xix.

If a body move in any curve superficies, whose axis passes through the centre of force, and from the body a
perpendicular be let fall upon the axis; and a line parallel and equal thereto be drawn from any given point
of the axis; I say, that this parallel line will describe an area proportional to the time.

Let BKL be a curve superficies, T a body revolving in it, STR a trajectory
which the body describes in the same, S the beginning of the trajectory,
OMK the axis of the curve superficies, TN a right linelet fall
perpendicularly from the body to the axis; OP a line parallel and equal
thereto drawn from the given point O in the axis; AP the orthographic
projection of the trajectory described by the point P in the plane AOP in
which the revolving line OP is found; A the beginning of that projection,
answering to the point S; TC a right line drawn from the body to the
centre; TG a part thereof proportional to the centripetal force with which
the body tends towards the centre C; TM a right line perpendicular to the
curve superficies; TI a part thereof proportional to the force of pressure
with which the body urges the superficies, and therefore with which it is
again repelled by the superficies towards M; PTF a right line parallel to the
axis and passing through the body, and GF, IH right lines let fall perpendicularly from the points G and I
upon that parallel PHTF. I say, now. that the area AOP, described by the radius OP from the beginning of the

C

motion, is proportional to the time. For the force TG (by Cor. 2, of the Laws of Motion) is resolved into the
forces TF, FG; and the force TI into the forces TH, HI; but the forces TF, TH, acting in the direction of the
line PF perpendicular to the plane AOP, introduce no change in the motion of the body but in a direction
perpendicular to that plane. Therefore its motion, so far as it has the same direction with the position of the
plane, that is, the motion of the point P, by which the projection AP of the trajectory is described in that
plane, is the same as if the forces TF, TH were taken away, and the body were acted on by the forces FG, HI
alone; that is, the same as if the body were to describe in the plane AOP the curve AP by means of a
centripetal force tending to the centre O, and equal to the sum of the forces FG and HI. But with such a force
as that (by Prop. 1) the area AOP will be described proportional to the time. Q.E.D.

Cor. By the same reasoning, if a body, acted on by forces tending to two or more centres in any the same
right line CO, should describe in a free space any curve line ST, the area AOP would be always proportional
to the time.

Proposition lvi. Problem xxxvii.

Granting the quadratures of curvilinear figures, and supposing that there are given both the law of
centripetal force tending to a given centre, and the curve superficies whose axis passes through that
centre; it is required to find the trajectory which a body will describe in that superficies, when going off
from a given place with a given velocity, and in a given direction in that superficies.

The last construction remaining, let the body T go from the given place S, in the direction of a line given by
position, and turn into the trajectory sought STR, whose orthographic projection in the plane BDO is AP.
And from the given velocity of the body in the altitude SC, its velocity in any other altitude TC will be also
given. With that velocity, in a given moment of time, let the body describe the particle Tt of its trajectory,
and let Pp be the projection of that particle described in the plane AOP. Join Op, and a little circle being
described upon the curve superficies about the centre T with the interval Tt let the projection of that little
circle in the plane AOP be the ellipsis pQ. And because the magnitude of that little circle T¢, and TN or PO its
distance from the axis CO is also given, the ellipsis pQ will be given both in kind and magnitude, as also its
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position to the right line PO. And since the area POp is proportional to the t’
the time is given, the angle POp will be given. And thence will be given p
the common intersection of the ellipsis and the right line Op, together with
the angle OPp, in which the projection APp of the trajectory cuts the line
OP. But from thence (by conferring Prop. XLI, with its 2d Cor.) the
manner of determining the curve APp easily appears. Then from the
several points P of that projection erecting to the plane AOP, the
perpendiculars PT meeting the curve superficies in T, there will be given
the several points T of the trajectory. Q.E.IL

(4
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The Mathematical Principles of Natural Philosophy

by Isaac Newton

Book 1.11
SECTION XI.

Of the motions of bodies tending to each other with centripetal forces.

I have hitherto been treating of the attractions of bodies towards an immovable centre; though very
probably there is no such thing existent in nature. For attractions are made towards bodies, and the actions
of the bodies attracted and attracting are always reciprocal and equal, by Law III; so that if there are two
bodies, neither the attracted nor the attracting body is truly at rest, but both (by Cor. 4, of the Laws of
Motion), being as it were mutually attracted, revolve about a common centre of gravity. And if there be more
bodies, which are either attracted by one single one which is attracted by them again, or which all of them,
attract each other mutually, these bodies will be so moved among themselves, as that their common centre of
gravity will either be at rest, or move uniformly forward in a right line. I shall therefore at present go on to
treat of the motion of bodies mutually attracting each other; considering the centripetal forces as attractions;
though perhaps in a physical strictness they may more truly be called impulses. But these propositions are to
be considered as purely mathematical; and therefore, laying aside all physical considerations, I make use of
a familiar way of speaking, to make myself the more easily understood by a mathematical reader.

Proposition lvii. Theorem xx.

Two bodies attracting each other mutually describe similar figures about their common centre of gravity,
and about each other mutually.

For the distances of the bodies from their common centre of gravity are reciprocally as the bodies; and
therefore in a given ratio to each other: and thence, by composition of ratios, in a given ratio to the whole
distance between the bodies. Now these distances revolve about their common term with an equable angular
motion, because lying in the same right line they never change their inclination to each other mutually. But
right lines that are in a given ratio to each other, and revolve about their terms with an equal angular motion,
describe upon planes, which either rest with those terms, or move with any motion not angular, figures
entirely similar round those terms. Therefore the figures described by the revolution of these distances are
similar. Q.E.D.

Proposition lviii. Theorem xxi.

If two bodies attract each other mutually with forces of any kind, and in the mean time revolve about the
common centre of gravity; I say, that, by the same forces, there may be described round either body
unmoved a figure similar and equal to the figures which the bodies so moving describe round each other
mutually.
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Let the bodies S and P revolve about their common centre of gravity C, proceeding from S to T, and from P
to Q. From the given point s let there be continually drawn sp, sq, equal and parallel to SP, TQ; and the curve

pqu, which the point p describes in its revolution round the immovable point s, will be similar and equal to
the curves which the bodies S and P describe about each other mutually; and therefore, by Theor. XX,
similar to the curves ST and PQV which the same bodies describe about their common centre of gravity C;
and that because the proportions of the lines SC, CP, and SP or sp, to each other, are given.

Case 1. The common centre of gravity C (by Cor. 4, of the Laws of Motion) is either at rest, or moves
uniformly in a right line. Let us first suppose it at rest, and in s and p let there be placed two bodies, one
immovable in s, the other movable in p, similar and equal to the bodies S and P. Then let the right lines PR
and pr touch the curves PQ and pq in P and p, and produce CQ and sq to R and r. And because the figures
CPRQ, sprq are similar, RQ will be to rq as CP to sp, and therefore in a given ratio. Hence if the force with
which the body P is attracted towards the body S, and by consequence towards the intermediate point the
centre C, were to the force with which the body p is attracted towards the centre s, in the same given ratio,
these forces would in equal times attract the bodies from the tangents PR, pr to the arcs PQ, pq, through the
intervals proportional to them RQ, rq; and therefore this last force (tending to s) would make the body p
revolve in the curve pqu, which would become similar to the curve PQV, in which the first force obliges the
body P to revolve; and their revolutions would be completed in the same times. But because those forces are
not to each other in the ratio of CP to sp, but (by reason of the similarity and equality of the bodies S and s, P
and p and the equality of the distances SP, sp) mutually equal, the bodies in equal times will be equally
drawn from the tangents; and therefore that the body p may be attracted through the greater interval rq,
there is required a greater time, which will be in the subduplicate ratio of the intervals; because, by Lemma
X, the spaces described at the very beginning of the motion are in a duplicate ratio of the times. Suppose,
then the velocity of the body p to be to the velocity of the body P in a subduplicate ratio of the distance sp to
the distance CP, so that the arcs pq, PQ, which are in a simple proportion to each other, may be described in
times that are in a subduplicate ratio of the distances; and the bodies P, p, always attracted by equal forces,
will describe round the quiescent centres C and s similar figures PQV, pqu, the latter of which pqu is similar
and equal to the figure which the body P describes round the movable body S. Q.E.D.

Case 2. Suppose now that the common centre of gravity, together with the space in which the bodies are
moved among themselves, proceeds uniformly in a right line; and (by Cor. 6, of the Laws of Motion) all the
motions in this space will be performed in the same manner as before; and therefore the bodies will describe
mutually about each other the same figures as before, which will be therefore similar and equal to the figure

pqu. Q.E.D.

Cor. 1. Hence two bodies attracting each other with forces proportional to their distance, describe (by
Prop. X) both round their common centre of gravity, and round each other mutually concentrical ellipses;
and, vice versa, if such figures are described, the forces are proportional to the distances.

Cor. 2. And two bodies, whose forces are reciprocally proportional to the square of their distance, describe
(by Prop. XI, XII, XIII), both round their common centre of gravity, and round each other mutually, conic
sections having their focus in the centre about which the figures are described. And, vice versa, if such
figures are described, the centripetal forces are reciprocally proportional to the squares of the distance.
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Cor. 3. Any two bodies revolving round their common centre of gravity describe areas proportional to the
times, by radii drawn both to that centre and to each other mutually.

Proposition lix. Theorem xxii.

The periodic time of two bodies S and P revolving round their common centre of gravity C, is to the
periodic time of one of the bodies P revolving round the other S remaining unmoved, and describing a
figure similar and equal to those which the bodies describe about each other mutually, in a subduplicate
ratio of the other body S to the sum of the bodies S + P.

For, by the demonstration of the last Proposition, the times in which any similar arcs PQ, and pq are
described are in a subduplicate ratio of the distances CP and SP, or sp, that is, in a subduplicate ratio of the
body S to the sum of the bodies S + P. And by composition of ratios, the sums of the times in which all the
similar arcs PQ and pq are described, that is, the whole times in which the whole similar figures are
described are in the same subduplicate ratio. Q.E.D.

Proposition Ix. Theorem xxiii.

If two bodies S and P, attracting each other with forces reciprocally proportional to the squares of their
distance, revolve about their common centre of gravity; I say, that the principal axis of the ellipsis which
either of the bodies, as P, describes by this motion about the other S, will be to the principal axis of the
ellipsis, which the same body P may describe in the same periodical time about the other body S quiescent,
as the sum of the two bodies S + P to the first of two mean proportionals between that sum and the other
body S.

For if the ellipses described were equal to each other, their periodic times by the last Theorem would be in
a subduplicate ratio of the body S to the sum of the bodies S + P. Let the periodic time in the latter ellipsis be
diminished in that ratio, and the periodic times will become equal; but, by Prop. XV, the principal axis of the
ellipsis will be diminished in a ratio sesquiplicate to the former ratio; that is, in a ratio to which the ratio of S
to S + P is triplicate; and therefore that axis will be to the principal axis of the other ellipsis as the first of two
mean proportionals between S + P and S to S + P. And inversely the principal axis of the ellipsis described
about the movable body will be to the principal axis of that described round the immovable as S + P to the
first of two mean proportionals between S + Pand S. Q.E.D.

Proposition Ixi. Theorem xxiv.

If two bodies attracting each other with any kind of forces, and not otherwise agitated or obstructed, are
moved in any manner whatsoever, those motions will be the same as if they did not at all attract each
other mutually, but were both attracted with the same forces by a third body placed in their common
centre of gravity; and the law of the attracting forces will he the same in respect of the distance of the

bodies from the common centre, as in respect of the distance between the two bodies.

For those forces with which the bodies attract each other mutually, by tending to the bodies, tend also to
the common centre of gravity lying directly between them; and therefore are the same as if they proceeded
from in intermediate body. Q.E.D.

And because there is given the ratio of the distance of either body from that common centre to the distance
between the two bodies, there is given, of course, the ratio of any power of one distance to the same power of
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the other distance; and also the ratio of any quantity derived in any manner from one of the distances
compounded any how with given quantities, to another quantity derived in like manner from the other
distance, and as many given quantities having that given ratio of the distances to the first. Therefore if the
force with which one body is attracted by another be directly or inversely as the distance of the bodies from
each other, or as any power of that distance; or, lastly, as any quantity derived after any manner from that
distance compounded with given quantities; then will the same force with which the same body is attracted
to the common centre of gravity be in like manner directly or inversely as the distance of the attracted body
from the common centre, or as any power of that distance; or, lastly, as a quantity derived in like sort from
that distance compounded with analogous given quantities. That is, the law of attracting force will be the
same with respect to both distances. Q.E.D.

Proposition Ixii. Problem xxxviii.

To determine the motions of two bodies which attract each other with forces reciprocally proportional to
the squares of the distance between them, and are let fall from given places.

The bodies, by the last Theorem, will be moved in the same manner as if they were attracted by a third
placed in the common centre of their gravity; and by the hypothesis that centre will be quiescent at the
beginning of their motion, and therefore (by Cor. 4, of the Laws of Motion) will be always quiescent. The
motions of the bodies are therefore to be determined (by Prob. XXV) in the same manner as if they were
impelled by forces tending to that centre; and then we shall have the motions of the bodies attracting each
other mutually. Q.E.L

Proposition Ixiii. Problem xxxix.

To determine the motions of two bodies attracting each other with forces reciprocally proportional to the
squares of their distance, and going off from given places in given directions with given velocities.

The motions of the bodies at the beginning being given, there is given also the uniform motion of the
common centre of gravity, and the motion of the space which moves along with this centre uniformly in a
right line, and also the very first, or beginning motions of the bodies in respect of this space. Then (by Cor. 5.
of the Laws, and the last Theorem) the subsequent motions will be performed in the same manner in that
space, as if that space together with the common centre of gravity were at rest, and as if the bodies did not
attract each other, but were attracted by a third body placed in that centre. The motion therefore in this
movable space of each body going off from a given place, in a given direction, with a given velocity, and acted
upon by a centripetal force tending to that centre, is to be determined by Prob. IX and XXVI, and at the same
time will be obtained the motion of the other round the same centre. With this motion compound the
uniform progressive motion of the entire system of the space and the bodies revolving in it, and there will be
obtained the absolute motion of the bodies in immovable space. Q.E.IL

Proposition Ixiv. Problem xI.

Supposing forces with which bodies mutually attract each other to increase in a simple ratio of their
distances from the centres; it is required to find the motions of several bodies among themselves.

Suppose the first two bodies T and L to have their common centre of gravity in D. These, by Cor. 1, Theor.
XXI, will describe ellipses having their centres in D, the magnitudes of which ellipses are known by Prob. V.
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Let now a third body S attract the two former T and L with theac °
attracted again by them. The force ST (by Cor. 2, of the Laws of

H
Motion) is resolved into the forces SD, DT; and the force SL into the & < :;D
forces SD and DL. Now the forces DT, DL, which are as their sum TL, B ‘
and therefore as the accelerative forces with which the bodies Tand L. * 1

attract each other mutually, added to the forces of the bodies T and L, I 4
)i FEAE e

the first to thefirst, and the last to the last, compose forces
proportional to the distances DT and DL as before, but only greater -

than those former forces: and therefore (by Cor. 1, Prop. X, and Cor. 1, and 8, Prop. IV) they will cause those
bodies to describe ellipses as before, but with a swifter motion. The remaining accelerative forces SD and
DL, by the motive forces SD x T and SD x L, which are as the bodies attracting those bodies equally and in
the direction of the lines TI, LK parallel to DS, do not at all change their situations with respectto one
another, but cause them equally to approach to the line IK; which must be imagined drawn through the
middle of the body S, and perpendicular to the line DS. But that approach to the line IK will be hindered by
causing the system of the bodies T and L on one side, and the body S on the other, with proper velocities, to
revolve round the common centre of gravity C. With such a motion the body S, because the sum of the
motive forces SD x T and SD x L is proportional to the distance CS, tends to the centre C, will describe an
ellipsis round the same centre C; and the point D, because the lines CS and CD are proportional, will
describe a like ellipsis over against it. But the bodies T and L, attracted by the motive forces SD x T and SD x
L, the first by the first, and the last by the last, equally and in the direction of the parallel lines TI and LK, as
was said before, will (by Cor. 5 and 6, of the Laws of Motion) continue to describe their ellipses round the
movable centre D, as before. Q.E.I.

Let there be added a fourth body V, and, by the like reasoning, it will be demonstrated that this body and
the point C will describe ellipses about the common centre of gravity B; the motions of the bodies T, L, and S
round the centres D and C remaining the same as before; but accelerated. And by the same method one may
add yet more bodies at pleasure. Q.E.I

This would be the case, though the bodies T and L attract each other mutually with accelerative forces
either greater or less than those with which they attract the other bodies in proportion to their distance. Let
all the mutual accelerative attractions be to each other as the distances multiplied into the attracting bodies;
and from what has gone before it will easily be concluded that all the bodies will describe different ellipses
with equal periodical times about their common centre of gravity B, in an immovable plane. Q.E.I.

Proposition Ixv. Theorem xxv.

Bodies, whose forces decrease in a duplicate ratio of their distances from their centres, may move among
themselves in ellipses; and by radii drawn to the foci may describe areas proportional to the times very
nearly.

In the last Proposition we demonstrated that case in which the motions will be performed exactly in
ellipses. The more distant the law of the forces is from the law in that case, the more will the bodies disturb
each other's motions; neither is it possible that bodies attracting each other mutually according to the law
supposed in this Proposition should move exactly in ellipses, unless by keeping a certain proportion of
distances from each other. However, in the following crises the orbits will not much differ from ellipses.

Case I. Imagine several lesser bodies to revolve about some very great one at different distances from it,
and suppose absolute forces tending to every one of the bodies proportional to each. And because (by Cor. 4,
of the Laws) the common centre of gravity of them all is either at rest, or moves uniformly forward in a right
line, suppose the lesser bodies so small that the great body may be never at a sensible distance from that
centre; and then the great body will, without any sensible error, be either at rest, or move uniformly forward
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in a right line; and the lesser will revolve about that great one in ellipses, and by radii drawn thereto will
describe areas proportional to the times; if we except the errors that may be introduced by the receding of
the great body from the common centre of gravity, or by the mutual actions of the lesser bodies upon each
other. But the lesser bodies may be so far diminished, as that this recess and the mutual actions of the bodies
on each other may become less than any assignable; and therefore so as that the orbits may become ellipses,
and the areas answer to the times, without any error that is not less than any assignable. Q.E.O.

Case 2. Let us imagine a system of lesser bodies revolving about a very great one in the manner just
described, or any other system of two bodies revolving about each other to be moving uniformly forward in a
right line, and in the mean time to be impelled sideways by the force of another vastly greater body situate at
a great distance. And because the equal accelerative forces with which the bodies are impelled in parallel
directions do not change the situation of the bodies with respect to each other, but only oblige the whole
system to change its place while the parts still retain their motions among themselves, it is manifest that no
change in those motions of the attracted bodies can arise from their attractions towards the greater, unless
by the inequality of the accelerative attractions, or by the inclinations of the lines towards each other, in
whose directions the attractions are made. Suppose, therefore, all the accelerative attractions made towards
the great body to be among themselves as the squares of the distances reciprocally; and then, by increasing
the distance of the great body till the differences of the right lines drawn from that to the others in respect of
their length, and the inclinations of those lines to each other, be less than any given, the motions of the parts
of the system will continue without errors that are not less than any given. And because, by the small
distance of those parts from each other, the whole system is attracted as if it were but one body, it will
therefore be moved by this attraction as if it were one body; that is, its centre of gravity will describe about
the great body one of the conic sections (that is, a parabola or hyperbola when the attraction is but languid
and an ellipsis when it is more vigorous); and by radii drawn thereto, it will describe areas proportional to
the times, without any errors but those which arise from the distances of the parts, which are by the
supposition exceedingly small, and may be diminished at pleasure. Q.E.O.

By a like reasoning one may proceed to more compounded cases in infinitum.

Cor. 1. In the second Case, the nearer the very great body approaches to the system of two or more
revolving bodies, the greater will the perturbation be of the motions of the parts of the system among
themselves; because the inclinations of the lines drawn from that great body to those parts become greater;
and the inequality of the proportion is also greater.

Cor. 2. But the perturbation will be greatest of all, if we suppose the accelerative attractions of the parts of
the system towards the greatest body of all are not to each other reciprocally as the squares of the distances
from that great body; especially if the inequality of this proportion be greater than the inequality of the
proportion of the distances from the great body. For if the accelerative force, acting in parallel directions and
equally, causes no perturbation in the motions of the parts of the system, it must of course, when it acts
unequally, cause a perturbation somewhere, which will be greater or less as the inequality is greater or less.
The excess of the greater impulses acting upon some bodies, and not acting upon others, must necessarily
change their situation among themselves. And this perturbation, added to the perturbation arising from the
inequality and inclination of the lines, makes the whole perturbation greater.

Cor. 3. Hence if the parts of this system move in ellipses or circles without any remarkable perturbation, it
is manifest that, if they are at all impelled by accelerative forces tending to any other bodies, the impulse is
very weak, or else is impressed very near equally and in parallel directions upon all of them.

Proposition Ixvi. Theorem xxvi.
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If three bodies whose forces decrease in a duplicate ratio of the distances attract each other mutually; and
the accelerative attractions of any two towards the third be between themselves reciprocally as the
squares of the distances; and the two least revolve about the greatest; I say, that the interior of the two
revolving bodies will, by radii drawn to the innermost and greatest, describe round that body areas more
proportional to the times, and a _figure more approaching to that of an ellipsis having its focus in the point
of concourse of the radii, if that great body be agitated by those attractions, than it would do if that great
body were not attracted at all by the lesser, but remained at rest; or than, it would if that great body were
very much more or very much less attracted, or very much more or very much less agitated, by the
attractions.

This appears plainly enough from the demonstration of the second Corollary of the foregoing Proposition;
but it maybe made out after this manner by a way of reasoning more distinct and more universally
convincing.

Case 1. Let the lesser bodies P and S revolve in the same plane about the greatest body T, the body P
describing the interior orbit PAB, and S the exterior orbit ESE. Let SK be the mean distance of the bodies P
and S; and let the accelerative attraction of the body P towards S, at that mean distance, be expressed by that
line SK. Make SL to SK as the square of SK to the square of SP, and SL will be the accelerative attraction of

------
e

B

D .
the body P towards S at any distance SP. Join PT, and draw LM parallel to it meeting ST in M; and the
attraction SL will be resolved (by Cor. 2, of the Laws of Motion) into the attractions SM, LM. And so the body
P will be urged with a threefold accelerative force. One of these forces tends towards T, and arises from the

mutual attraction of the bodies T and P. By this force alone the body P would describe round the body T, by
the radius PT, areas proportional to the times, and an ellipsis whose focus is in the centre of the body T; and
this it would do whether the body T remained unmoved, or whether it were agitated by that attraction. This
appears from Prop. XI, and Cor. 2 and 3 of Theor. XXI. The other force is that of the attraction LM, which,
because it tends from P to T, will be superadded to and coincide with the former force; and cause the areas
to be still proportional to the times, by Cor. 3, Theor. XXI. But because it is not reciprocally proportional to
the square of the distance PT, it will compose, when added to the former, a force varying from that
proportion; which variation will be the greater by how much the proportion of this force to the former is
greater, caeteris paribus. Therefore, since by Prop. XI, and by Cor. 2, Theor. XXI, the force with which the
ellipsis is described about the focus T ought to be directed to that focus, and to be reciprocally proportional
to the square of the distance PT, that compounded force varying from that proportion will make the orbit
PAB vary from the figure of an ellipsis that has its focus in the point T; and so much the more by how much
the variation from that proportion is greater; and by consequence by how much the proportion of the second
force LM to the first force is greater, caeteris paribus. But now the third force SM, attracting the body P in a
direction parallel to ST, composes with the other forces a new force which is no longer directed from P to T;
and which varies so much more from this direction by how much the proportion of this third force to the
other forces is greater, caeteris paribus; and therefore causes the body P to describe, by the radius TP, areas
no longer proportional to the times; and therefore makes the variation from that proportionality so much
greater by how much the proportion of this force to the others is greater. But this third force will increase the
variation of the orbit PAB from the elliptical figure before-mentioned upon two accounts; first because that
force is not directed from P to T; and, secondly, because it is not reciprocally proportional to the square of
the distance PT. These things being premised, it is manifest that the areas are then most nearly proportional
to the times, when that third force is the least possible, the rest preserving their former quantity; and that the
orbit PAB does then approach nearest to the elliptical figure above-mentioned, when both the second and
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third, but especially the third force, is the least possible; the first force remaining in its former quantity.

Let the accelerative attraction of the body T towards S be expressed by the line SN; then if the accelerative
attractions SM and SN were equal, these, attracting the bodies T and P equally and in parallel directions
would not at all change their situation with respect to each other. The motions of the bodies between
themselves would be the same in that case as if those attractions did not act at all, by Cor. 6, of the Laws of
Motion. And, by a like reasoning, if the attraction SN is less than the attraction SM, it will take away out of
the attraction SM the part SN, so that there will remain only the part (of the attraction) MN to disturb the
proportionality of the areas and times, and the elliptical figure of the orbit. And in like manner if the
attraction SN be greater than the attraction SM, the perturbation of the orbit and proportion will be
produced by the difference MN alone. After this manner the attraction SN reduces always the attraction SM
to the attraction MN, the first and second attractions remaining perfectly unchanged; and therefore the areas
and times come then nearest to proportionality, and the orbit PAB to the above-mentioned elliptical figure,
when the attraction MN is either none, or the least that is possible; that is, when the accelerative attractions
of the bodies P and T approach as near as possible to equality; that is, when the attraction SN is neither none
at all, norless than the least of all the attractions SM, but is, as it were; a mean between the greatest and
least of all those attractions SM, that is, not much greater nor much less than the attraction SK. Q.E.D.

Case 2. Let now the lesser bodies P, S, revolve about a greater T in different planes; and the force LM,
acting in the direction of the line PT situate in the plane of the orbit PAB, will have the same effect as before;
neither will it draw the body P from the plane of its orbit. But the other force NM acting in the direction of a
line parallel to ST (and which, therefore, when the body S is without the line of the nodes is inclined to the
plane of the orbit PAB), besides the perturbation of the motion just now spoken of as to longitude,
introduces another perturbation also as to latitude, attracting the body P out of the plane of its orbit. And
this perturbation, in any given situation of the bodies P and T to each other, will be as the generating force
MN; and therefore becomes least when the force MN is least, that is (as was just now shewn), where the
attraction SN is not much greater nor much less than the attraction SK. Q.E.D.

Cor. 1. Hence it may be easily collected, that if several less bodies P, S, R, &c., revolve about a very great
body T, the motion of the innermost revolving body P will be least disturbed by the attractions of the others,
when the great body is as well attracted and agitated by the rest (according to the ratio of the accelerative
forces) as the rest are by each other mutually.

Cor. 2. In a system of three bodies, T, P, S, if the accelerative attractions of any two of them towards a
third be to each other reciprocally as the squares of the distances, the body P, by the radius PT, will describe
its area about the body T swifter near the conjunction A and the opposition B than it will near the
quadratures C and D. For every force with which the body P is acted on and the body T is not, and which
does not act in the direction of the line PT, does either accelerate or retard the description of the area,
according as it is directed, whether in consequentia or in antecedentia. Such is the force NM. This force in
the passage of the body P from C to A is directed in consequentia to its motion, and therefore accelerates it;
then as far as D in antecedentia, and retards the motion; then in consequentia as far as B; and lastly in
antecedentia as it moves from B to C.

Cor. 3. And from the same reasoning it appears that the body P caeteris paribus, moves more swiftly in the
conjunction and opposition than in the quadratures.

Cor. 4. The orbit of the body P, caeteris paribus, is more curve at the quadratures than at the conjunction
and opposition. For the swifter bodies move, the less they deflect from a rectilinear path. And besides the
force KL, or NM, at the conjunction and opposition, is contrary to the force with which the body T attracts
the body P, and therefore diminishes that force; but the body P will deflect the less from a rectilinear path
the less it is impelled towards the body T.
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Cor. 5. Hence the body P, caeteris paribus, goes farther from the body T at the quadratures than at the
conjunction and opposition. This is said, however, supposing no regard had to the motion of eccentricity.
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For if the orbit of the body P be eccentrical, its eccentricity (as will be shewn presently by Cor. 9) will be

greatest when the apsides are in the syzygies; and thence it may sometimes come to pass that the body P, in
its near approach to the farther apsis, may go farther from the body T at the syzygies than at the quadratures.

Cor. 6. Because the centripetal force of the central body T, by which the body P is retained in its orbit, is
increased at the quadratures by the addition caused by the force LM, and diminished at the syzygies by the
subduction caused by the force KL, and, because the force KL is greater than LM, it is more diminished than
increased; and, moreover, since that centripetal force (by Cor. 2, Prop. IV) is in a ratio compounded of the
simple ratio of the radius TP directly, and the duplicate ratio of the periodical time inversely; it is plain that
this compounded ratio is diminished by the action of the force KL; and therefore that the periodical time,
supposing the radius of the orbit PT to remain the same, will be increased, and that in the subduplicate of
that ratio in which the centripetal force is diminished; and, therefore, supposing this radius increased or
diminished, the periodical time will be increased more or diminished less than in the sesquiplicate ratio of
this radius, by Cor. 6, Prop. IV. If that force of the central body should gradually decay, the body P being less
and less attracted would go farther and farther from the centre T; and, on the contrary, if it were increased,
it would draw nearer to it. Therefore if the action of the distant body S, by which that force is diminished,
were to increase and decrease by turns, the radius TP will be also increased and diminished by turns; and
the periodical time will be increased and diminished in a ratio compounded of the sesquiplicate ratio of the
radius, and of the subduplicate of that ratio in which the centripetal force of the central body T is diminished
or increased, by the increase or decrease of the action of the distant body S.

Cor. 7. It also follows, from what was before laid down, that the axis of the ellipsis described by the body P,
or the line of the apsides, does as to its angular motion go forwards and backwards by turns, but more
forwards than backwards, and by the excess of its direct motion is in the whole carried forwards. For the
force with which the body P is urged to the body T at the quadratures, where the force MN vanishes, is
compounded of the force LM and the centripetal force with which the body T attracts the body P. The first
force LM, if the distance PT be increased, is increased in nearly the same proportion with that distance, and
the other force decreases in the duplicate ratio of the distance; and therefore the sum of these two forces
decreases in a less than the duplicate ratio of the distance PT; and therefore, by Cor. 1, Prop. XLV, will make
the line of the apsides, or, which is the same thing, the upper apsis, to go backward. But at the conjunction
and opposition the force with which the body P is urged towards the body T is the difference of the force KL,
and of the force with which the body T attracts the body P; and that difference, because the force KL is very
nearly increased in the ratio of the distance PT, decreases in more than the duplicate ratio of the distance PT;
and therefore, by Cor. 1, Prop. XLV, causes the line of the apsides to go forwards. In the places between the
syzygies and the quadratures, the motion of the line of the apsides depends upon both of these causes
conjunctly, so that it either goes forwards or backwards in proportion to the excess of one of these causes
above the other. Therefore since the force KL in the syzygies is almost twice as great as the force LM in the
quadratures, the excess will be on the side of the force KL, and by consequence the line of the apsides will be
carried forwards. The truth of this and the foregoing Corollary will be more easily understood by conceiving
the system of the two bodies T and P to be surrounded on every side by several bodies S, S, S, &c., disposed
about the orbit ESE. For by the actions of these bodies the action of the body T will be diminished on every
side, and decrease in more than a duplicate ratio of the distance.
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Cor. 8. But since the progress or regress of the apsides depends upon the decrease of the centripetal force,

that is, upon its being in a greater or less ratio than the duplicate ratio of the distance TP, in the passage of

Cor. 9. If a body is obliged, by a force reciprocally proportional to the square of its distance from any
centre, to revolve in an ellipsis round that centre; and afterwards in its descent from the upper apsis to the
lower apsis, that force by a perpetual accession of new force is increased in more than a duplicate ratio of the
diminished distance; it is manifest that the body, being impelled always towards the centre by the perpetual
accession of this new force, will incline more towards that centre than if it were urged by that force alone
which decreases in a duplicate ratio of the diminished distance, and therefore will describe an orbit interior
to that elliptical orbit, and at the lower apsis approaching nearer to the centre than before. Therefore the
orbit by the accession of this new force will become more eccentrical. If now, while the body is returning
from the lower to the upper apsis, it should decrease by the same degrees by which it increases before the
body would return to its first distance; and therefore if the force decreases in a yet greater ratio, the body,
being now less attracted than before, will ascend to a still greater distance, and so the eccentricity of the orbit
will be increased still more. Therefore if the ratio of the increase and decrease of the centripetal force be
augmented each revolution, the eccentricity will be augmented also; and, on the contrary, if that ratio
decrease, it will be diminished.

Now, therefore, in the system of the bodies T, P, S, when the apsides of the orbit PAB are in the
quadratures, the ratio of that increase and decrease is least of all, and becomes greatest when the apsides are
in the syzygies. If the apsides are placed in the quadratures, the ratio near the apsides is less, and near the
syzygies greater, than the duplicate ratio of the distances; and from that greater ratio arises a direct motion
of the line of the apsides, as was just now said. But if we consider the ratio of the whole increase or decrease
in the progress between the apsides, this is less than the duplicate ratio of the distances. The force in the
lower is to the force in the upper apsis in less than a duplicate ratio of the distance of the upper apsis from
the focus of the ellipsis to the distance of the lower apsis from the same focus; and, contrariwise, when the
apsides are placed in the syzygies, the force in the lower apsis is to the force in the upper apsis in a greater
than a duplicate ratio of the distances. For the forces LM in the quadratures added to the forces of the body T
compose forces in a less ratio; and the forces KL in the syzygies subducted from the forces of the body T,
leave the forces ina greater ratio. Therefore the ratio of the whole increase and decrease in the passage
between the apsides is least at the quadratures and greatest at the syzygies; and therefore in the passage of
the apsides from the quadratures to the syzygies it is continually augmented, and increases the eccentricity of
the ellipsis; and in the passage from the syzygies to the quadratures it is perpetually decreasing, and
diminishes the eccentricity.

Cor. 10. That we may give an account of the errors as to latitude, let us suppose the plane of the orbit EST
to remain immovable; and from the cause of the errors above explained, it is manifest, that, of the two forces
NM, ML, which are the only and entire cause of them, the force ML acting always in the plane of the orbit
PAB never disturbs the motions as to latitude; and that the force NM, when the nodes are in the syzygies,
acting also in the same plane of the orbit, does not at that time affect those motions. But when the nodes are
in the quadratures, it disturbs them very much, and, attracting the body P perpetually out of the plane of its
orbit, it diminishes the inclination of the plane in the passage of the body from the quadratures to the
syzygies, and again increases the same in the passage from the syzygies to the quadratures. Hence it comes to
pass that when the body is in the syzygies, the inclination is then least of all, and returns to the first
magnitude nearly, when the body arrives at the next node. But if the nodes are situate at the octants after the
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quadratures, that is, between C and A, D and B, it will appear, from what was just now shewn, that in the
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passage of the body P from either node to the ninetieth degree from thence, the inclination of the plane is

perpetually diminished; then, in the passage through the next 45 degrees to the next quadrature, the
inclination is increased; and afterwards, again, in its passage through another 45 degrees to the next node, it
is diminished. Therefore the inclination is more diminished than increased, and is therefore always less in
the subsequent node than in the preceding one. And, by a like reasoning, the inclination is more increased
than diminished when the nodes are in the other octants between A and D, B and C. The inclination,
therefore, is the greatest of all when the nodes are in the syzygies. In their passage from the syzygies to the
quadratures the inclination is diminished at each appulse of the body to the nodes: and be comes least of all
when the nodes are in the quadratures, and the body in the syzygies; then it increases by the same degrees by
which it decreased before; and, when the nodes come to the next syzygies, returns to its former magnitude.

Cor. 11. Because when the nodes are in the quadratures the body P is perpetually attracted from the plane
of its orbit; and because this attraction is made towards S in its passage from, the node C through the
conjunction A to the node D; and to the contrary part in its passage from the node D through the opposition
B to the node C; it is manifest that, in its motion from the node C, the body recedes continually from the
former plane CD of its orbit till it comes to the next node; and therefore at that node, being now at its
greatest distance from the first plane CD, it will pass through the plane of the orbit EST not in D, the other
node of that plane, but in a point that lies nearer to the body S, which therefore be comes a new place of the
node in antecedentia to its former place. And, by a like reasoning, the nodes will continue to recede in their
passage from this node to the next. The nodes, therefore, when situatein the quadratures, recede
perpetually; and at the syzygies, where no perturbation can be produced in the motion as to latitude, are
quiescent: in the intermediate places they partake of both conditions, and recede more slowly; and,
therefore, being always either retrograde or stationary, they will be carried backwards, or in antecedentia,
each revolution.

Cor. 12. All the errors described in these corrollaries are a little greater at the conjunction of the bodies P,
S, than at their opposition; because the generating forces NM and ML are greater.

Cor. 13. And since the causes and proportions of the errors and variations mentioned in these Corollaries
do not depend upon the magnitude of the body S, it follows that all things before demonstrated will happen,
if the magnitude of the body S be imagined so great as that the system of the two bodies P and T may revolve
about it. And from this increase of the body S, and the consequent increase of its centripetal force, from
which the errors of the body P arise, it will follow that all these errors, at equal distances, will be greater in
this case, than in the other where the body S revolves about the system of the bodies P and T.

Cor. 14. But since the forces NM, ML, when the body S is exceedingly distant, are very nearly as the force
SK and the ratio PT to ST conjunctly; that is, if both the distance PT, and the absolute force of the body S be
given, as ST3 reciprocally; and since those forces NM, ML are the causes of all the errors and effects treated
of in the foregoing Corollaries; it is manifest that all those effects, if the system of bodies T and P continue as
before, and only the distance ST and the absolute force of the body S be changed, will be very nearly in a
ratio compounded of the direct ratio of the absolute force of the body S, and the triplicate inverse ratio of the
distance ST. Hence if the system of bodies T and P revolve about a distant body S, those forces NM, ML, and
their effects, will be (by Cor. 2 and 6, Prop IV) reciprocally in a duplicate ratio of the periodical time. And
thence, also, if the magnitude of the body S be proportional to its absolute force, those forces NM, ML, and
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their effects, will be directly as the cube of the apparent diameter of the distant body S viewed from T, and so
vice versa. For these ratios are the same as the compounded ratio above mentioned.

Cor. 15. And because if the orbits ESE and PAB, retaining their figure, proportions, and inclination to each
other, should alter their magnitude; and the forces of the bodies S and T should either remain, or be changed
in any given ratio; these forces (that is, the force of the body T, which obliges the body P to deflect from a
rectilinear course into the orbit PAB, and the force of the body S, which causes the body P to deviate from
that orbit) would act always in the same manner, and in the same proportion; it follows, that all the effects
will be similar and proportional, and the times of those effects proportional also; that is, that all the linear
errors will be as the diameters of the orbits, the angular errors the same as before; and the times of similar
linear errors, or equal angular errors, as the periodical times of the orbits.

Cor. 16. Therefore if the figures of the orbits and their inclination to each other be given, and the
magnitudes, forces, and distances of the bodies be any how changed, we may, from the errors and times of
those errors in one case, collect very nearly the errors and times of the errors in any other case. But this may
be done more expeditiously by the following method. The forces NM, ML, other things remaining unaltered,
are as the radius TP; and their periodical effects (by Cor. 2, Lem. X) are as the forces and the square of the
periodical time of the body P conjunctly. These are the linear errors of the body P; and hence the angular
errors as they appear from the centre T (that is, the motion of the apsides and of the nodes, and all the
apparent errors as to longitude and latitude) are in each revolution of the body P as the square of the time of
the revolution, very nearly. Let these ratios be compounded with the ratios in Cor. 14, and in any system of
bodies T, P, S, where P revolves about T very near to it, and T revolves about S at a great distance, the
angular errors of the body P, observed from the centre T, will be in each revolution of the body P as the
square of the periodical time of the body P directly, and the square of the periodical time of the body T
inversely. And therefore the mean motion of the line of the apsides will be in a given ratio to the mean
motion of the nodes; and both those motions will be as the periodical time of the body P directly, and the
square of the periodical time of the body T inversely. The increase or diminution of the eccentricity and
inclination of the orbit PAB makes no sensible variation in the motions of the apsides and nodes, unless that
increase or diminution be very great indeed.

Cor. 17. Since the line LM becomes sometimes greater and sometimes less than the radius PT, let the mean
quantity of the force LM be expressed by that radius PT; and then that mean force will be to the mean force
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SK or SN (which may be also expressed by ST) as the length PT to the length ST. But the mean force SN or
ST, by which the body T is retained in the orbit it describes about S, is to the force with which the body P is
retained in its orbit about T in a ratio compounded of the ratio of the radius ST to the radius PT, and the

duplicate ratio of the periodical time of the body P about T to the periodical time of the body T about S. And,
ex aequo, the mean force LM is to the force by which the body P is retained in its orbit about T (or by which
the same body P might revolve at the distance PT in the same periodical time about any immovable point T)
in the same duplicate ratio of the periodical times. The periodical times therefore being given, together with
the distance PT, the mean force LM is also given; and that force being given, there is given also the force MN,
very nearly, by the analogy of the lines PT and MN.

Cor. 18. By the same laws by which the body P revolves about the body T, let us suppose many fluid bodies
to move round T at equal distances from it; and to be so numerous, that they may all become contiguous to
each other, so as to form a fluid annulus, or ring, of a round figure, and concentrical to the body T; and the
several parts of this annulus, performing their motions by the same law as the body P, will draw nearer to
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the body T, and move swifter in the conjunction and opposition of themselves and the body S, than in the
quadratures. And the nodes of this annulus, or its intersections with the plane of the orbit of the body S or T,
will rest at the syzygies; but out of the syzygies they will be carried backward, or in antecedentia; with the
greatest swiftness in the quadratures, and more slowly in other places. The inclination of this annulus also
will vary, and its axis will oscillate each revolution, and when the revolution is completed will return to its
former situation, except only that it will be carried round a little by the precession of the nodes.

Cor. 19. Suppose now the sphaerical body T, consisting of some matter not fluid, to be enlarged, and to
extend itself on every side as far as that annulus, and that a channel were cut all round its circumference
containing water; and that this sphere revolves uniformly about its own axis in the same periodical time.
This water being accelerated and retarded by turns (as in the last Corollary), will be swifter at the syzygies,
and slower at the quadratures, than the surface of the globe, and so will ebb and flow in its channel after the
manner of the sea. If the attraction of the body's were taken away, the water would acquire no motion of flux
and reflux by revolving round the quiescent centre of the globe. The case is the same of a globe moving
uniformly forwards in a right line, and in the mean time revolving about its centre (by Cor. 5 of the Laws of
Motion), and of a globe uniformly attracted from its rectilinear course (by Cor. 6, of the same Laws). But let
the body S come to act upon it, and by its unequable attraction the water will receive this new motion; for
there will be a stronger attraction upon that part of the water that is nearest to the body, and a weaker upon
that part which is more remote. And the force LM will attract the water downwards at the quadratures, and
depress it as far as the syzygies; and the force KL will attract it upwards in the syzygies, and withhold its
descent, and make it rise as far as the quadratures; except only in so far as the motion of flux and reflux may
be directed by the channel of the water, and be a little retarded by friction.

Cor. 20. If, now, the annulus becomes hard, and the globe is diminished, the motion of flux and reflux will
cease; but the oscillating motion of the inclination and the praecession of the nodes will remain. Let the
globe have the same axis with the annulus, and perform its revolutions in the same times, and at its surface
touch the annulus within, and adhere to it; then the globe partaking of the motion of the annulus, this whole
compages will oscillate, and the nodes will go backward, for the globe, as we shall shew presently, is perfectly
indifferent to the receiving of all impressions. The greatest angle of the inclination of the annulus single is
when the nodes are in the syzygies. Thence in the progress of the nodes to the quadratures, it endeavours to
diminish its inclination, arid by that endeavour impresses a motion upon the whole globe. The globe retains
this motion impressed, till the annulus by a contrary endeavour destroys that motion, and impresses a new
motion in a contrary direction. And by this means the greatest motion of the decreasing inclination happens
when the nodes are in the quadratures; and the least angle of inclination in the octants after the quadratures;
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and, again, the greatest motion of reclination happens when the nodes are in the syzygies; and the greatest

angle of reclination in the octants following. And the case is the same of a globe without this annulus, if it be
a little higher or a little denser in the equatorial than in the polar regions; for the excess of that matter in the
regions near the equator supplies the place of the annulus. And though we should suppose the centripetal
force of this globe to be any how increased, so that all its parts were to tend downwards, as the parts of our
earth gravitate to the centre, yet the phenomena of this and the preceding Corollary would scarce be altered;
except that the places of the greatest and least height of the water will be different: for the water is now no
longer sustained and kept in its orbit by its centrifugal force, but by the channel in which it flows. And,
besides, the force LM attracts the water downwards most in the quadratures, and the force KL or NM — LM
attracts it upwards most in the syzygies. And these forces conjoined cease to attract the water downwards,
and begin to attract it upwards in the octants before the syzygies; and cease to attract the water upwards,
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and begin to attract the water downwards in the octants after the syzygies. And thence the greatest height of
the water may happen about the octants after the syzygies; and the least height about the octants after the
quadratures; excepting only so far as the motion of ascent or descent impressed by these forces may by the
vis insita of the water continue a little longer, or be stopped a little sooner by impediments in its channel.

Cor. 21. For the same reason that redundant matter in the equatorial regions of a globe causes the nodes to
g o backwards, and therefore by the increase of that matter that retrogradation is increased, by the
diminution is diminished, and by the removal quite ceases: it follows, that, if more than that redundant
matter be taken away, that is, if the globe be either more depressed, or of a more rare consistence near the
equator than near the poles, there will arise a motion of the nodes in consequentia.

Cor. 22. And thence from the motion of the nodes is known the constitution of the globe. That is, if the
globe retains unalterably the same poles, and the motion (of the nodes) be i n antecedentia, there is a
redundance of the matter near the equator; but if in consequentia, a deficiency. Suppose a uniform and
exactly spherical globe to be first at rest in a free space: then by some impulse made obliquely upon its
superficies to be driven from its place, and to receive a motion partly circular and partly right forward.
Because this globe is perfectly indifferent to all the axes that pass through its centre, nor has a greater
propensity to one axis or to one situation of the axis than to any other, it is manifest that by its own force it
will never change its axis, or the inclination of it. Let now this globe be impelled obliquely by a new impulse
in the same part of its superficies as before, and since the effect of an impulse is not at all changed by its
coming sooner or later, it is manifest that these two impulses, successively impressed, will produce the same
motion as if they were impressed at the same time: that, is, the same motion as if the globe had been
impelled by a simple force compounded of them both (by Cor. 2, of the Laws), that is, a simple motion about
an axis of a given inclination. And the case is the same if the second impulse were made upon any other
place of the equator of the first motion; and also if the first impulse were made upon any place in the
equator of the motion which would be generated by the second impulse alone; and therefore, also, when both
impulses are made in any places whatsoever; for these impulses will generate the same circular motion as if
they were impressed together, and at once, in the place of the intersections of the equators of those motions,
which would be generated by each of them separately. Therefore, a homogeneous and perfect globe will not
retain several distinct motions, but will unite all those that are impressed on it, and reduce them into one;
revolving, as far as in it lies, always with a simple and uniform motion about one single given axis, with an
inclination perpetually invariable. And the inclination of the axis, or the velocity of the rotation, will not be
changed by centripetal force. For if the globe be supposed to be divided into two hemispheres, by any plane
whatsoever passing through its own centre, and the centre to which the force is directed, that force will
always urge each hemisphere equally; and therefore will not incline the globe any way as to its motion round
its own axis. But let there be added any where between the pole and the equator a heap of new matter like a
mountain, and this, by its perpetual endeavour to recede from the centre of its motion, will disturb the
motion of the globe, and cause its poles to wander about its superficies, describing circles about themselves
and their opposite points. Neither can this enormous evagation of the poles be corrected, unless by placing
that mountain either in one of the poles; in which case, by Cor. 21, the nodes of the equator will go forwards;
or in the equatorial regions, in which case, by Cor. 20, the nodes will go backwards; or, lastly, by adding on
the other side of the axis a new quantity of matter, by which the mountain may be balanced in its motion;
and then the nodes will either go forwards or backwards, as the mountain and this newly added matter
happen to be nearer to the pole or to the equator.

Proposition Ixvii. Theorem xxvii.

The same laws of attraction being supposed, I say, that the exterior body S does, by radii drawn to the
point O, the common centre of gravity of the interior bodies P and T, describe round that centre areas
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more proportional to the times, and an orbit more approaching to the form of an ellipsis having its focus in
that centre, than it can describe round the innermost and greatest body T by radii drawn to that body.

For the attractions of the body S towards T and P compose its absolute
attraction, which is more directed towards O, the common centre of gravity of | P,
the bodies T and P, than it is to the greatest body T; and which is more in a §&----reme....
reciprocal proportion to the square of the distance SO, than it is to the square of .
the distance ST; as will easily appear by a little consideration.

Proposition Ixviii. Theorem xxviii.

The same laws of attraction supposed, I say, that the exterior body S will, by radii drawn to O, the
common centre of gravity of the interior bodies P and T, describe round that centre areas more
proportional to the times, and an orbit more approaching to the form of an ellipsis having its focus in that
centre, if the innermost and greatest body be agitated by these attractions as well as the rest, than it would
do if that body were either at rest as not attracted, or were much more or much less attracted, or much
more or much less agitated.

This may be demonstrated after the same manner as Prop. LXVI, but by a more prolix reasoning, which I
therefore pass over. It will be sufficient to consider it after this manner. From the demonstration of the last
Proposition it is plain, that the centre, towards which the body S is urged by the two forces conjunctly, is very
near to the common centre of gravity of those two other bodies. If this centre were to coincide with that
common centre, and moreover the common centre of gravity of all the three bodies were at rest, the body S
on one side, and the common centre of gravity of the other two bodies on the other side, would describe true
ellipses about that quiescent common centre. This appears from Cor. 2, Prop LVIII, compared with what was
demonstrated in Prop. LXIV, and LXV. Now this accurate elliptical motion will be disturbed a little by the
distance of the centre of the two bodies from the centre towards which the third body S is attracted. Let there
be added, moreover, a motion to the common centre of the three, and the perturbation will be increased yet

more. Therefore the perturbation is least when the common centre of the
: Pq three bodies is at rest; that is, when the innermost and greatest body T is
(). T attracted according to the same law as the rest are; and is always greatest
' when the common centre of the three, by the diminution of the motion of the

body T, begins to be moved, and is more and more agitated.

Cor. And hence if more lesser bodies revolve about the great one, it may easily be inferred that the orbits
described will approach nearer to ellipses; and the descriptions of areas will be more nearly equable, if all
the bodies mutually attract and agitate each other with accelerative forces that are as their absolute forces
directly, and the squares of the distances inversely; and if the focus of each orbit be placed in the common
centre of gravity of all the interior bodies (that is, if the focus of the first and innermost orbit be placed in the
centre of gravity of the greatest and inner most body; the focus of the second orbit in the common centre of
gravity of the two innermost bodies; the focus of the third orbit in the common centre of gravity of the three
innermost; and so on), than if the innermost body were at rest, and was made the common focus of all the
orbits.

Proposition Ixix. Theorem xxix.

In a system of several bodies A, B, C, D, &c., if any one of those bodies, as A, attract all the rest, B, C, D, &c.,
with accelerative forces that are reciprocally as the squares of the distances from the attracting body; and
another body, as B, attracts also the rest. A, C, D, &c., with forces that are reciprocally as the squares of the
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distances from the attracting body; the absolute forces of the attracting bodies A and B will be to each
other as those very bodies A and B to which those forces belong.

For the accelerative attractions of all the bodies B, C, D, towards A, are by the supposition equal to each
other at equal distances; and in like manner the accelerative attractions of all the bodies towards B are also
equal to each other at equal distances. But the absolute attractive force of the body A is to the absolute
attractive force of the body B as the accelerative attraction of all the bodies towards A to the accelerative
attraction of all the bodies towards B at equal distances; and so is also the accelerative attraction of the body
B towards A to the accelerative attraction of the body A towards B. But the accelerative attraction of the body
B towards A is to the accelerative attraction of the body A towards B as the mass of the body A to the mass of
the body B; because the motive forces which (by the 2d, 7th, and 8th Definition) are as the accelerative forces
and the bodies attracted conjunctly are here equal to one another by the third Law. Therefore the absolute
attractive force of the body A is to the absolute attractive force of the body B as the mass of the body A to the
mass of the body B. Q.E.D.

Cor. 1. Therefore if each of the bodies of the system A, B, C, D, &c. does singly attract all the rest with
accelerative forces that are reciprocally as the squares of the distances from the attracting body, the absolute
forces of all those bodies will be to each other as the bodies themselves.

Cor. 2. By a like reasoning, if each of the bodies of the system A, B, C, D, &c., do singly attract all the rest
with accelerative forces, which are either reciprocally or directly in the ratio of any power whatever of the
distances from the attracting body; or which are defined by the distances from each of the attracting bodies
according to any common law; it is plain thatthe absolute forces of those bodies are as the bodies
themselves.

Cor. 3. In a system of bodies whose forces decrease in the duplicate ratio of the distances, if the lesser
revolve about one very great one in ellipses, having their common focus in the centre of that great body, and
of a figure exceedingly accurate; and moreover by radii drawn to that great body describe areas proportional
to the times exactly; the absolute forces of those bodies to each other will be either accurately or very nearly
in the ratio of the bodies. And so on the contrary. This appears from Cor. of Prop. XLVIII, compared with the
first Corollary of this Prop.

Scholium.

These Propositions naturally lead us to the analogy there is between centripetal forces, and the central
bodies to which those forces used to be directed; for it is reasonable to suppose that forces which are directed
to bodies should depend upon the nature and quantity of those bodies, as we see they do in magnetical
experiments. And when such cases occur, we are to compute the attractions of the bodies by assigning to
each of their particles its proper force, and then collecting the sum of them all. I here use the word attraction
in general for any endeavour, of what kind soever, made by bodies to approach to each other; whether that
endeavour arise from the action of the bodies themselves, as tending mutually to or agitating each other by
spirits emitted; or whether it arises from the action of the aether or of the air, or of any medium whatsoever,
whether corporeal or incorporeal, any how impelling bodies placed therein towards each other. In the same
general sense I use the word impulse, not defining in this treatise the species or physical qualities of forces,
but investigating the quantities and mathematical proportions of them; as I observed before in the
Definitions. In mathematics we are to investigate the quantities of forces with their proportions consequent
upon any conditions supposed; then, when we enter upon physics, we compare those proportions with the
phenomena of Nature, that we may know what conditions of those forces answer to the several kinds of
attractive bodies. And this preparation being made, we argue more safely concerning the physical species,
causes, and proportions of the forces. Let us see, then, with what forces sphaerical bodies consisting of
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particles endued with attractive powers in the manner above spoken of must act mutually upon one another:
and what kind of motions will follow from thence.
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The Mathematical Principles of Natural Philosophy

by Isaac Newton

Book 1.12
SECTION XII.

Of the attractive forces of sphaerical bodies.

Proposition Ixx. Theorem xxx.

If to every point of a sphaerical surface there tend equal centripetal forces decreasing in the duplicate ratio
of the distances from those points; I say, that a corpuscle placed within that superficies will not be
attracted by those forces any way.

Let HIKL, be that sphaerical superficies, and P a corpuscle placed within.

Through P let there be drawn to this superficies to two lines HK, IL, intercepting

very small arcs HI, KL; and because (by Cor. 3, Lem. VII) the triangles HPI, LPK

H are alike, those arcs will be proportional to the distances HP, LP; and any particles

at HI and KL of the sphaerical superficies, terminated by right lines passing

through P, will be in the duplicate ratio of those distances. Therefore the forces of

these particles exerted upon the body P are equal between themselves. For the

forces are as the particles directly, and the squares of the distances inversely. And

these two ratios compose the ratio of equality. The attractions therefore, being made equally towards

contrary parts, destroy each other. And by a like reasoning all the attractions through the whole sphaerical

superficies are destroyed by contrary attractions. Therefore the body P will not be any way impelled by those
attractions. Q.E.D.

Proposition Ixxi. Theorem xxxi.

The same things supposed as above, I say, that a corpuscle placed with out the sphaerical superficies is
attracted towards the centre of the sphere with a force reciprocally proportional to the square of its
distance from that centre.

Let AHKB, ahkb, be two equal sphaerical superficies described about the centre S, s; their diameters AB,
ab; and let P and p be two corpuscles situate without the spheres in those diameters produced. Let there be

B \ 5

drawn from the corpuscles the lines PHK, PIL, phk, pil, cutting off from the great circles AHB, ahb, the equal
arcs HK, hk, IL, il; and to those lines let fall the perpendiculars SD, sd, SE, se, IR, ir; of which let SD, sd, cut
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PL, pl, in F and f. Let fall also to the diameters the perpendiculars I1Q, ig. Let now the angles DPE, dpe,
vanish; and because DS and ds, ES and es are equal, the lines PE, PF, and pe, pf, and the lineolao DF, df may
be taken for equal; because their last ratio, when the angles DPE, dpe vanish together, is the ratio of equality.
These things then supposed, it will be, as PI to PF so is RI to DF, and as pf to pi so is df or DF to ri; and, ex
aequo, as PI x pfto PF x pi so is RI to ri, that is (by Cor. 3, Lem VII), so is the arc IH to the arc ih. Again, PI is
to PS as IQ to SE, and ps topi asse or SE toig; and, ex aequo, PI xps toPS xpi as IQ toig. And
compounding the ratios PI2 x pf x ps is to pi2 x PF x PS, as IH x IQ toih xig; that is, as the circular
superficies which is described by the arc IH, as the semi-circle AKB revolves about the diameter AB, is to the
circular superficies described by the arc ih as the semi-circle akb revolves about the diameter ab. And the
forces with which these superficies attract the corpuscles P and p in the direction of lines tending to those
superficies are by the hypothesis as the superficies themselves directly, and the squares of the distances of
the superficies from those corpuscles inversely; that is, as pf x ps to PF x PS. And these forces again are to the
oblique parts of them which (by the resolution of forces as in Cor. 2, of the Laws) tend to the centres in the
directions of the lines PS, ps, as PI to PQ, and pi to pg; that is (because of the like triangles PIQ and PSF, piq
and psf), as PS to PF and ps to pf. Thence ex aequo, the attraction of the corpuscle P towards S is to the

attraction of the corpuscle p towards s as PF Xf?sf XPS jg o PEX II’)S XPS that is, as ps2 to PS2 . And, by a like

reasoning, the forces with which the superficies described by the revolution of the arcs KL, kl attract those
corpuscles, will be as ps2 to PS2 . And in the same ratio will be the forces of all the circular superficies into
which each of the sphaerical superficies may be divided by taking sd always equal to SD, and se equal to SE.
And therefore, by composition, the forces of the entire sphaerical superficies exerted upon those corpuscles
will be in the same ratio. Q.E.D.

Proposition Ixxii. Theorem xxxii.

If to the several points of a sphere there tend equal centripetal forces decreasing in a duplicate ratio of the
distances from those points; and there be given both the density of the sphere and the ratio of the diameter
of the sphere to the distance of the corpuscle from its centre; I say, that the force with which the corpuscle
is attracted is proportional to the semi-diameter of the sphere.

For conceive two corpuscles to be severally attracted by two spheres, one by one, the other by the other,
and their distances from the centres of the spheres to be proportional to the diameters of the spheres
respectively, and the spheres to be resolved into like particles, disposed in a like situation to the corpuscles.
Then the attractions of one corpuscle towards the several particles of one sphere will be to the attractions of
the other towards as many analogous particles of the other sphere in a ratio compounded of the ratio of the
particles directly, and the duplicate ratio of the distances inversely. But the particles are as the spheres, that
is, in a triplicate ratio of the diameters, and the distances are as the diameters; and the first ratio directly
with the last ratio taken twice inversely, becomes the ratio of diameter to diameter. Q.E.D.

Cor. 1. Hence if corpuscles revolve in circles about spheres composed of matter equally attracting, and the
distances from the centres of the spheres be proportional to their diameters, the periodic times will be equal.

Cor. 2. And, vice versa, if the periodic times are equal, the distances will be proportional to the diameters.
These two Corollaries appear from Cor. 3, Prop. IV.

Cor. 3. If to the several points of any two solids whatever, of like figure and equal density, there tend equal
centripetal forces decreasing in a duplicate ratio of the distances from those points, the forces, with which
corpuscles placed in a like situation to those two solids will be attracted by them, will be to each other as the
diameters of the solids.
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Proposition Ixxiii. Theorem xxxiii.

If to the several points of a given sphere there tend equal centripetal forces decreasing in a duplicate ratio
of the distances from the points; I say, that a corpuscle placed within the sphere is attracted by a force
proportional to its distance from the centre.

In the sphere ABCD, described about the centre S, let there be placed the corpuscle
P; and about the same centre S, with the interval SP, conceive described an interior
sphere PEQF. It is plain (by Prop. LXX) that the concentric sphaerical superficies, of
which the difference AEBF of the spheres is composed, have no effect at all upon the
body P, their attractions being destroyed by contrary attractions. There remains,
therefore, only the attraction of the interior sphere PEQF. And (by Prop, LXXII) this
is as the distance PS. Q.E.D.

Scholium.

By the superficies of which I here imagine the solids composed, I donot mean superficies purely
mathematical, but orbs so extremely thin, that their thickness is as nothing; that is, the evanescent orbs of
which the sphere will at last consist when the number of the orbs isincreased, and their thickness
diminished without end. In like manner, by the points of which lines, surfaces, and solids are said to be
composed, are to be understood equal particles, whose magnitude is perfectly inconsiderable.

Proposition Ixxiv. Theorem xxxiv.

The same things supposed, I say, that a corpuscle situate without the sphere is attracted with a force
reciprocally proportional to the square of its distance from the centre.

For suppose the sphere to be divided into innumerable concentric sphaerical superficies, and the
attractions of the corpuscle arising from the several superficies will be reciprocally proportional to the square
of the distance of the corpuscle from the centre of the sphere (by Prop. LXXI). And, by composition, the sum
of those attractions, that is, the attraction of the corpuscle towards the entire sphere, will be in the same
ratio. Q.E.D.

Cor. 1. Hence the attractions of homogeneous spheres at equal distances from the centres will be as the
spheres themselves. For (by Prop. LXXII) if the distances be proportional to the diameters of the spheres,
the forces will be as the diameters. Let the greater distance be diminished in that ratio; and the distances
now being equal, the attraction will be increased in the duplicate of that ratio; and therefore will be to the
other attraction in the triplicate of that ratio; that is, in the ratio of the spheres.

Cor. 2. At any distances whatever the attractions are as the spheres applied to the squares of the distances.

Cor. 3. If a corpuscle placed without an homogeneous sphere is attracted by a force reciprocally
proportional to the square of its distance from the centre, and the sphere consists of attractive particles, the
force of every particle will decrease in a duplicate ratio of the distance from each particle.

Proposition Ixxv. Theorem xxxv.
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If to the several points of a given sphere there tend equal centripetal forces decreasing in a duplicate ratio
of the distances from the points; I say, that another similar sphere will be attracted by it with a force
reciprocally proportional to the square of the distance of the centres.

For the attraction of every particle is reciprocally as the square of its distance from the centre of the
attracting sphere (by Prop. LXXIV), and is therefore the same as if that whole attracting force issued from
one single corpuscle placed in the centre of this sphere. But this attraction is as great as on the other hand
the attraction of the same corpuscle would be, if that were itself attracted by the several particles of the
attracted sphere with the same force with which they are attracted by it. But that attraction of the corpuscle
would be (by Prop. LXXIV) reciprocally proportional to the square of its distance from the centre of the
sphere; therefore the attraction of the sphere, equal thereto, is also in the same ratio. Q.E.D.

Cor. 1. The attractions of spheres towards other homogeneous spheres are as the attracting spheres
applied to the squares of the distances of their centres from the centres of those which they attract.

Cor. 2. The case is the same when the attracted sphere does also attract. For the several points of the one
attract the several points of the other with the same force with which they themselves are attracted by the
others again; and therefore since in all attractions (by Law III) the attracted and attracting point are both
equally acted on, the force will be doubled by their mutual attractions, the proportions remaining.

Cor. 3. Those several truths demonstrated above concerning the motion of bodies about the focus of the
conic sections will take place when an attracting sphere is placed in the focus, and the bodies move without
the sphere.

Cor. 4. Those things which were demonstrated before of the motion of bodies about the centre of the conic
sections take place when the motions are performed within the sphere.

Proposition Ixxvi. Theorem xxxvi.

If spheres be however dissimilar (as to density of matter and attractive force) in the same ratio onward
from the centre to the circumference; but every where similar, at every given distance from the centre, on
all sides round about; and the attractive force of every point decreases in the duplicate ratio of the distance

of the body attracted; I say, that the whole force with which one of these spheres attracts the other will be
reciprocally proportional to the square of the distance of the centres.

Imagine several concentric similar spheres, AB, CD, EF, &c.,

, the innermost of which added to the outermost may compose a
'. matter more dense towards the centre, or subducted from them
"may leave the same more lax and rare. Then, by Prop. LXXV,
" these spheres will attract other similar concentric spheres GH,
IK, LM, &c., each the other, with forces reciprocally proportional
_to the square of the distance SP. And, by composition or division,
" the sum of all those forces, or the excess of any of them above the

i others; that is, the entire force with which the whole sphere AB

(composed of any concentric spheres or of their differences) will attract the whole sphere GH (composed of
any concentric spheres or their differences) in the same ratio. Let the number of the concentric spheres be
increased in infinitum, so that the density of the matter together with the attractive force may, in the
progress from the circumference to the centre, increase or decrease according to any given law; and by the
addition of matter not attractive, let the deficient density be supplied, that so the spheres may acquire any
form desired; and the force with which one of these attracts the other will be still, by the former reasoning, in
the same ratio of the square of the distance inversely. Q.E.D.
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Cor. 1. Hence if many spheres of this kind, similar in all respects, attract each other mutually, the
accelerative attractions of each to each, at any equal distances of the centres, will be as the attracting
spheres.

Cor. 2. And at any unequal distances, as the attracting spheres applied to the squares of the distances
between the centres.

Cor. 3. The motive attractions, or the weights of the spheres towards one another, will be at equal
distances of the centres as the attracting and attracted spheres conjunctly; that is, as the products arising
from multiplying the spheres into each other.

Cor. 4. And at unequal distances, as those products directly, and the squares of the distances between the
centres inversely.

Cor. 5. These proportions take place also when the attraction arises from the attractive virtue of both
spheres mutually exerted upon each other. For the attraction is only doubled by the conjunction of the forces,
the proportions remaining as before.

Cor. 6. If spheres of this kind revolve about others at rest, each about each; and the distances between the
centres of the quiescent and revolving bodies are proportional to the diameters of the quiescent bodies; the
periodic times will be equal.

Cor. 7. And, again, if the periodic times are equal, the distances will be proportional to the diameters.

Cor. 8. All those truths above demonstrated, relating to the motions of bodies about the foci of conic
sections, will take place when an attracting sphere, of any form and condition like that above described, is
placed in the focus.

Cor. 9. And also when the revolving bodies are also attracting spheres of any condition like that above
described.

Proposition Ixxvii. Theorem xxxvii.

If to the several points of spheres there tend centripetal forces proportional to the distances of the points
from the attracted bodies; I say, that the compounded force with which two spheres attract each other
mutually is as the distance between the centres of the spheres.

Case 1. Let AEBF be a sphere; S its centre; P a corpuscle attracted;
PASB the axis of the sphere passing through the centre of the
corpuscle; EF, ef two planes cutting the sphere, and perpendicular to
the axis, and equi-distant, one on one side, the other on the other,
from the centre of the sphere; G and g the intersections of the planes
and the axis; and H any point in the plane EF. The centripetal force of

F/"___“\g‘

the point H upon the corpuscle P, exerted in the direction of the line
PH, is as the distance PH; and (by Cor. 2, of the Laws) the same
exerted in the direction of the line PG, or towards the centre S, is as the length PG. Therefore the force of all
the points in the plane EF (that is, of that whole plane) by which the corpuscle P is attracted towards the
centre S is as the distance PG multiplied by the number of those points, that is, as the solid contained under
that plane EF and the distance PG. And in like manner the force of the plane ef, by which the corpuscle P is
attracted towards the centre S, is as that plane drawn into its distance Pg, or as the equal plane EF drawn
into that distance Pg; and the sum of the forces of both planes as the plane EF drawn into the sum of the
distances PG + Pg, thatis, as that plane drawn into twice the distance PS of the centre and the corpuscle;
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that is, as twice the plane EF drawn into the distance PS, or as the sum of the equal planes EF + ef drawn
into the same distance. And, by a like reasoning, the forces of all the planes in the whole sphere, equi-distant
on each side from the centre of the sphere, are as the sum of those planes drawn into the distance PS, that is,
as the whole sphere and the distance PS conjunctly. Q.E.D.

Case 2. Let now the corpuscle P attract the sphere AEBF. And, by the same reasoning, it will appear that
the force with which the sphere is attracted is as the distance PS. Q.E.D.

Case 3. Imagine another sphere composed of innumerable corpuscles P; and because the force with which
every corpuscle is attracted is as the distance of the corpuscle from the centre of the first sphere, and as the
same sphere conjunctly, and is therefore the same as if it all proceeded from a single corpuscle situate in the
centre of the sphere, the entire force with which all the corpuscles in the second sphere are attracted, that is,
with which that whole sphere is attracted, will be the same as if that sphere were attracted by a force issuing
from a single corpuscle in the centre of the first sphere; and is therefore proportional to the distance between
the centres of the spheres. Q.E.D.

Case 4. Let the spheres attract each other mutually, and the force will be doubled, but the proportion will
remain. Q.E.D.

Case 5. Let the corpuscle p be placed within the sphere AEBF; and because the
force of the plane ef upon the corpuscle is as the solid contained under that plane
and the distance pg; and the contrary force of the plane EP as the solid contained
under that plane and the distance pG; the force compounded of both will be as the
difference of the solids, that is, as the sum of the equal planes drawn into half the
difference of the distances; that is, as that sum drawn into pS, the distance of the
corpuscle from the centre of the sphere. And, by a like reasoning, the attraction of
all the planes EF, ef, throughout the whole sphere, that is, the attraction of the

whole sphere, is conjunctly as the sum of all the planes, or as the whole sphere, and as pS, the distance of the
corpuscle from the centre of the sphere. Q.E.D.

Case 6. And if there be composed a new sphere out of innumerable corpuscles such as p, situate within the
first sphere AEBF, it may be proved, as before, that the attraction, whether single of one sphere towards the
other, or mutual of both towards each other, will be as the distance pS of the centres. Q.E.D.

Proposition Ixxviii. Theorem xxxviii.

If spheres is the progress from the centre to the circumference be however dissimilar and unequable, but
similar on every side round about at all given distances from the centre; and the attractive force of every
point be as the distance of the attracted body; I say, that the entire force with which two spheres of this
kind attract each other mutually is proportional to the distance between the centres of the spheres.

This is demonstrated from the foregoing Proposition, in the same manner as Proposition LXXVI was
demonstrated from Proposition LXXV.

Cor. Those things that were above demonstrated in Prop. X and LXIV, of the motion of bodies round the
centres of conic sections, take place when all the attractions are made by the force of sphaerical bodies of the
condition above described, and the attracted bodies are spheres of the same kind.

Scholium.

I have now explained the two principal cases of attractions; to wit, when the centripetal forces decrease in
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a duplicate ratio of the distances, or increase in a simple ratio of the distances, causing the bodies in both
cases to revolve in conic sections, and composing sphaerical bodies whose centripetal forces observe the
same law of increase or decrease in the recess from the centre as the forces of the particles themselves do;
which is very remarkable. It would be tedious to run over the other cases, whose conclusions are less elegant
and important, so particularly as I have done these. I choose rather to comprehend and determine them all
by one general method as follows.

Lemma xxix.

If about the centre S there be described any circle as AEB, and about the centre P there be also described
two circles EF, ef, cutting the first in E And e, and the line PS in F and f; and there be let fall to PS the
perpendiculars ED, ed; I say, that if the distance of the arcs EF, ef be supposed to be infinitely diminished,
the last ratio of the evanscent line Dd to the evanescent line Ff is the same as that of the line PE to the line
PS.

For if the line Pe cut the arc EF in g; and the right line Ee, which coincides with the evanescent arc Ee, be

produced, and meet the right line PS in T; and there be let fall from S to PE the perpendicular SG; then,

because of the like triangles DTE, dTe, DES, it will be as Dd to Ee so DT to TE, or DE to ES: and because the

triangles, Eeq, ESG (by Lem. VIII, and Cor. 3, Lem. VII) are similar, it will be as Ee to eq or Ff so ES to SG;

and, ex aequo, as Dd to Ff so DE to SG; that is (because of the similar triangles PDE, PGS), so is PE to PS.
Q.E.D.

Proposition Ixxix. Theorem xxxix.

Suppose a superficies as EFfe to have its breadth infinitely diminished, and to be just vanishing and that
the same superficies by its revolution round the axis PS describes a sphaerical concavo-convex solid, to the
several equal particles of which there tend equal centripetal forces; I say, that the force with which that
solid attracts a corpuscle situate in P Is in a ratio compounded of the ratio of the solid DE2 x Ff And the
ratio of the force with which the given particle in the place Ff would, attract the same corpuscle.

For if we consider, first, the force of the sphaerical superficies FE which is generated by the revolution of
the arc FE, and is cut any where, as in r, by the line de, the annular part
of the superficies generated by the revolution of the arc rE will be as the
lineola Dd, the radius of the sphere PE remaining the same; as
Archimedes has demonstrated in his Book of the Sphere and Cylinder.
And the force of this superficies exerted in the direction of the lines PE

or Pr situate all round in the conical superficies, will be as this annular
superficies itself; that is as the lineola Dd, or, which is the same, as the
rectangle under the given radius PE of the sphere and the lineola Dd;
but that force, exerted in the direction of the line PS tending to the
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centre S, will be less in the ratio PD to PE, and therefore will be as PD x Dd. Suppose now the line DF to be
divided into innumerable little equal particles, each of which call Dd, and then the superficies FE will be
divided into so many equal annuli, whose forces will be as the sum of all the rectangles PD x Dd, that is, as
1oPF2 — 15PD2, and therefore as DE2. Let now the superficies FE be drawn into the altitude Ff; and the force
of the solid EFfe exerted upon the corpuscle P will be as DE2 x Ff; that is, if the force be given which any
given particle as Ff exerts upon the corpuscle P at the distance PF. But if that force be not given, the force of
the solid EFfe will be as the solid DE2 x Ff and that force not given, conjunctly. Q.E.D.

Proposition Ixxx. Theorem xI.

If to the several equal parts of a sphere ABE described about the centre S there tend equal centripetal
forces; and from the several points D in the axis of the sphere AB in which a corpuscle, as F, is placed, there

be erected the perpendiculars DE meeting the sphere in E, and if in those perpendiculars the lengths DN be
DE=2 x PS
PE
the distance PE upon the corpuscle P conjunctly; I say, that the whole force with which the corpuscle P is
attracted towards the sphere is as the area ANB, comprehended under the axis of the sphere AB, and the

crrve line ANB, the locus of the point N.

taken as the quantity , and as the force which a particle of the sphere situate in the axis exerts at

For supposing the construction in the last Lemma and Theorem to stand, conceive the axis of the sphere
AB to be divided into innumerable equal particles Dd, and the whole sphere to be divided into so many
sphserical concavo-convex laminae EFfe; and erect the perpendicular dn. By the last Theorem, the force with
which the laminae EFfe attracts the corpuscle P is as DE2 x Ff and the force of one particle exerted at the
distance PE or PF, conjunctly. But (by the last Lemma)
Dd is to Ff as PE to PS, and therefore Ff is equal to

PS x Dd. 2 : DE=2 x PS.
PR and DE2 x Ff is equal to Dde, and

therefore the force of the lamina EFfe is as Dd x %EPS
and the force of a particle exerted at the distance PF
conjunctly; that is, by the supposition, as DN x Dd, or as

the evanescent area DNnd. Therefore the forces of all the

laminae exerted upon the corpuscle P are as all the areas
DNnd, that is, the whole force of the sphere will be as the
whole area ANB. Q.E.D.

Cor. 1. Hence if the centripetal force tending to the several particles remain always the same at all

DE2 x PS

PR the whole force with which the corpuscle is attracted by the sphere is

distances, and DN be made as

as the area ANB.

Cor. 2. If the centripetal force of the particles be reciprocally as the distance of the corpuscle attracted by it,

and DN be made as DE;iE;PS, the force with which the corpuscle P is attracted by the whole sphere will be as
the area ANB.

Cor. 3. If the centripetal force of the particles be reciprocally as the cube of the distance of the corpuscle

DE2 x PS

PR the force with which the corpuscle is attracted by the whole

attracted by it, and DN be made as
sphere will be as the area ANB.

Cor. 4. And universally if the centripetal force tending to the several particles of the sphere be supposed to

DE2x PS.

PEXV the force with which a corpuscle is attracted

be reciprocally as the quantity V; and DN be made as
by the whole sphere will be as the area ANB.
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Proposition Ixxxi. Problem xli.

The things remaining as above, it is required to measure the area ANB.

From the point P let there be drawn the right line PH touching the sphere in H; and to the axis PAB,
letting fall the perpendicular HI, bisect PI in L; and (by Prop. XII, Book II, Elem.) PE2 is equal to PS2 + SE2
+ 2PSD. But because the triangles SPH, SHI are alike, SE2 or '
SH2 is equal to the rectangle PSI. Therefore PE2 is equal to
the rectangle contained under PS and PS + SI + 2SD; that is,
under PS and 2LS + 2SD; that is, under PS and 2LD.
Moreover DE2 is equal to SE2 — SD2, or SE2 — LS2 + 2SLD -
LD2, that is, 2SLD — LD2 — ALB. For LS2 — SE2 or L.S2 — SA2
(by Prop. VI, Book II, Elem.) is equal to the rectangle ALB.

Therefore if instead of DE2 we write 2SLD — LD2 — ALB, the

quantity DEE X {;S, which (by Cor. 4 of the foregoing Prop.) is

2SLDxPS _LD2xPS _ALB x PS,
PEXV PExV ~ PExV ’

where if instead of Vwe write the inverse ratio of the centripetal force, and instead of PE the mean

as the length of the ordinate DN, will now resolve itself into three parts

proportional between PS and 2LD, those three parts will become ordinates to so many curve lines, whose
areas are discovered by the common methods. Q.E.D.

Example 1. If the centripetal force tending to the several particles of the sphere be reciprocally as the

distance; instead of V write PE the distance, then 2PS x LD for PE2; and DN will become as SL — Y2LD —

ALB ALB.
2LD’ LD’

length AB will describe the rectangular area 2SL x AB; and the indefinite part LD, drawn perpendicularly

Suppose DN equal to its double 2SL — LD - and 2SL the given part of the ordinate drawn into the

into the same length with a continued motion, in such sort as in its motion one way or another it may either

LB2 — LA2
2

by increasing or decreasing remain always equal to the length LD, will describe the area , that is,

ALB
LD

, drawn after the same manner with a continued motion perpendicularly into the same length, will describe
the area of an hyperbola, which subducted from the area SL x AB will leave ANB the 7

the area SL x AB; which taken from the former area 2SL x AB, leaves the area SL x AB. But the third part &>

area sought. Whence arises this construction of the Problem. At the points, L, A, B,
erect the perpendiculars LI, Aa, Bb; making Aa equal to LB, and Bb equal to LA.
Making LI and LB asymptotes, describe through the points a, b, the hyperbolic curve
ab. And the chord ba being drawn, will inclose the area aba equal to the area sought
ANB.

L A H
Example 2. If the centripetal force tending to the several particles of the sphere be
reciprocally as the cube of the distance, or (which is the same thing) as that cube applied to any given plane;

PE3 2, SLxAS2 _AS2 _ ALB x AS2 .
wrlte JAS: for V, and 2PS x LD for PE2; and DN will become as 222 2° PSXID ~2PS  2PSxiDz that is (because
LSI

PS, AS, SI are continually proportional), as iD —1/,SI - ‘%]S(QSI

length AB, the first 2= LST ovin generate the area of an hyperbola; the second /2SI the area 1/2AB x SI; the third

D
ALB x SI ALB x SI ALB x SI
—SIDz lhe area=—r==rg

third, and there will remain ANB, the area sought. Whence arises this construction of the problem. At the

. If we draw then these three parts into the

, that is, 2AB x SI. From the first subduct the sum of the second and
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points L, A, S, B, erect the perpendiculars LI Aa Ss, Bb, of which suppose Ss equal

a
to SI; and through the point s, to the asymptotes LI, LB, describe the hyperbola asb
\ meeting the perpendiculars Aa, Bb, in a and b; and the rectangle 2ASI, subducted
from the hyberbolic area AasbB, will leave ANB the area sought.
. Example 3. If the centripetal force tending to the several particles of the spheres
I.I A ].l S

V, then y(2PS+LD) for PE, and DN will become as

decrease in a quadruplicate ratio of the distance from the particles; write 2};&—ES43 for

SI2 x SL 1 SI2 1 SI2x ALB 1

V(ST XVLDs ~ 2v(2SI) * VLD ~ 2v(2SI) *VLDs
2SI2 x SL 1 1 );

These three parts drawn into the length AB, produce so many areas, viz. ~VEsh into ( VLA) " V(LB)

H

+ Sl2 . . SI2 x ALB .
) * V(@SD) into VLB — VLA; and V(@S into

11 .
( V(LA3) ~ V(LB3) ). Andthese after due reduction come

forth %, SI2, and SI2 + % And these by subducting

B the lastfrom the first, become “Si. Therefore the entire

3LI
force with which the corpuscle P is attracted towards the

SI3
PI’

. centre of the sphere is as that is, reciprocally as PS3 x PI.

Q.E.L

By the same method one may determine the attraction of a corpuscle situate within the sphere, but more

expeditiously by the following Theorem.

Proposition Ixxxii. Theorem xli.

In a sphere described about the centre S with the interval SA, if there be taken SI, SA, SP continually
proportional; I say, that the attraction of a corpuscle within the sphere in any place 1 is to its attraction
without the sphere in the place P in a ratio compounded of the subduplicate ratio of IS, PS, the distances

from the centre, and the subduplicate ratio of the centripetal forces tending to the centre in those places P

and 1.

As if the centripetal forces of the particles of the sphere be
reciprocally as the distances of the corpuscle attracted by them;
the force with which the corpuscle situate in I is attracted by the
entire sphere will be to the force with which it is attracted in P in a
ratio compounded of the subduplicate ratio of the distance SI to

the distance SP, and the subduplicate ratio of the centripetal force P
inthe place I arising from any particle in the centre to the
centripetal force in the place P arising from the same particle in
the centre; that is, in the subduplicate ratio of the distances SI, SP
to each other reciprocally. These two subduplicate ratios compose

Ll
]

the ratio of equality, and therefore the attractions in I and P produced by the whole sphere are equal. By the

like calculation, if the forces of the particles of the sphere are reciprocally in a duplicate ratio of the distances,

it will be found that the attraction in I is to the attraction in P as the distance SP to the semi-diameter SA of

the sphere. If those forces are reciprocally in a triplicate ratio of the distances, the attractions in I and P will

be to each other as SP2 to SA2; if in a quadruplicate ratio, as SP3 to SA3. Therefore since the attraction in P

was found in this last case to be reciprocally as PS3 x PI, the attraction in I will be reciprocally as SA3 x PI,

that is, because SA3 is given reciprocally as PI. And the progression is the same in infinitum. The

demonstration of this Theorem is as follows:
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The things remaining as above constructed, and a corpuscle being in any place P, the ordinate DN was

DE=2 x PS
PExV

will become (mutatis mutandis) as

found to be as . Therefore if IE be drawn, that ordinate for any other place of the corpuscle, as I,

DE2x IS
IExV

sphere, as E, to be to each other at the distances IE and PE as PEn to IEn (where the number n denotes the

DE2xPS ., DE2xIS
PE x PEn 24 TE x [En

each other is as PS x IE x IEn to IS x PE x PEn. Because SI, SE, SP are in continued proportion, the triangles
SPE, SEI are alike; and thence IE is to PE as IS to SE or SA. For the ratio of IE to PE write the ratio of IS to
SA; and the ratio of the ordinates becomes that of PS xIEn to SA x PEn. But the ratio of PS to SA is
subduplicate of that of the distances PS, SI; and the ratio of IEn to PEn (because IE is to PE as IS to SA) is
subduplicate of that of the forces at the distances PS, IS. Therefore the ordinates, and consequently the areas
which the ordinates describe, and the attractions proportional to them, are in a ratio compounded of those
subduplicate ratios. Q.E.D.

. Suppose the centripetal forces flowing from any point of the

whose ratio to

index of the powers of PE and IE), and those ordinates will become as

Proposition Ixxxiii. Problem xlii.

To find the force with which a corpuscle placed in the centre of a sphere is attracted towards any segment
of that sphere whatsoever.

Let P be a body in the centre of that sphere and RBSD a segment thereof contained

under the plane RDS, and thesphaerical superficies RBS. Let DB be cut in F by a R

sphaerical superficies EFG described from the centre P, and let the segment be - ]

divided into the parts BREFGS, FEDG. Let us suppose that segment to be not a

purely mathematical buta physical superficies, having some, but a perfectly .

inconsiderable thickness. Let that thickness be called O, and (by what Archimedes Ia

has demonstrated) that superficies will be as PF x DF x O. Let us suppose besides the 1} D

attractive forces of the particles of the sphere to be reciprocally as that power of the

distances, of which n is index; and the force with which the superficies EFG attracts N I

the body P will be (by Prop. LXXIX) as D%FX O, that is, as 2DFxO _ DF2x O. Let c -
n PF(n-1) PFn ]

theperpendicular FN drawn into O be proportional to this quantity; and the s

curvilinear area BDI, which the ordinate FN, drawn through the length DB with a
continued motion will describe, will be as the whole force with which the whole segment RBSD attracts the
body P. Q.E.L

Proposition Ixxxiv. Problem xliii.

To find the force with which a corpuscle, placed without the centre of a sphere in the axis of any segment, is
attracted by that segment.

Let the body P placed in the axis ADB of the segment EBK be attracted by - »
that segment. About the centre P, with the interval PE, let the spherical
superficies EFK be described; and let it divide the segment into two parts
EBKFE and EFKDE. Find the force of the first of those parts by Prop. p
LXXXI, and the force of the latter part by Prop. LXXXIII, and the sum of & K\ + 1)
the forces will be the force of the whole segment EBKDE. Q.E.IL
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Scholium.

The attractions of sphaerical bodies being now explained, it comes next in order to treat of the laws of
attraction in other bodies consisting in like manner of attractive particles; but to treat of them particularly is
not necessary to my design. It will be sufficient to subjoin some general propositions relating to the forces of
such bodies, and the motions thence arising, because the knowledge of these will be of some little use in

philosophical inquiries.
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The Mathematical Principles of Natural Philosophy

by Isaac Newton

Book 1.13
SECTION XIII.

Of the attractive forces of bodies which are not of a sphaerical figure.

Proposition Ixxxv. Theorem xlii.

If a body be attracted by another, and its attraction be vastly stronger when it is contiguous to the
attracting body than when they are separated from one another by a very small interval; the forces of the
particles of the attracting body decrease, in the recess of the body attracted, in more than a duplicate ratio

of the distance of the particles.

For if the forces decrease in a duplicate ratio of the distances from the particles, the attraction towards a
sphaerical body being (by Prop. LXXIV) reciprocally as the square of the distance of the attracted body from
the centre of the sphere, will not be sensibly increased by the contact, and it will be still less increased by it,
if the attraction, in the recess of the body attracted, decreases in a still less proportion. The proposition,
therefore, is evident concerning attractive spheres. And the case isthe same of concave sphaerical orbs
attracting external bodies. And much more does it appear in orbs that attract bodies placed within them,
because there the attractions diffused through the cavities of those orbs are (by Prop. LXX) destroyed by
contrary attractions, and therefore have no effect even in the place of contact. Now if from these spheres and
sphaerical orbs we take away any parts remote from the place of contact, and add new parts any where at
pleasure, we may change the figures of the attractive bodies at pleasure; but the parts added or taken away,
being remote from the place of contact, will cause no remarkable excess of the attraction arising from the
contact of the two bodies. Therefore the proposition holds good in bodies of all figures. Q.E.D.

Proposition Ixxxvi. Theorem xliii.

If the forces of the particles of which an attractive body is composed decrease, in the recess of the attractive
body, in a triplicate or more than a triplicate ratio of the distance from the particles, the attraction will be
vastly stronger in the point of contact than when the attracting and attracted bodies are separated from
each other, though by never so small an interval.

For that the attraction is infinitely increased when the attracted corpuscle comes to touch an attracting
sphere of this kind, appears, by the solution of Problem XLI, exhibited in the second and third Examples.
The same will also appear (by comparing those Examples and Theorem XLI together) of attractions of
bodies made towards concavo-convex orbs, whether the attracted bodies be placed without the orbs, or in
the cavities within them. And by adding to or taking from those spheres and orbs any attractive matter any
where without the place of contact, so that the attractive bodies may receive any assigned figure, the
Proposition will hold good of all bodies universally. Q.E.D.
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Proposition Ixxxvii. Theorem xliv.

If two bodies similar to each other, and consisting of matter equally attractive, attract separately two
corpuscles proportional to those bodies, and in a like situation to them, the accelerative attractions of the
corpuscles towards the entire bodies will be as the accelerative attractions of the corpuscles towards
particles of the bodies proportional to the wholes, and alike situated in them.

For if the bodies are divided into particles proportional to the wholes, and alike situated in them, it will be,
as the attraction towards any particle of one of the bodies to the attraction towards the correspondent
particlein the other body, so are the attractions towards the several particles of the firstbody, to the
attractions towards the several correspondent particles of the other body; and, by composition, so is the
attraction towards the first whole body to the attraction towards the second whole body. Q.E.D.

Cor. 1 . Therefore if, as the distances of the corpuscles attracted increase, the attractive forces of the
particles decrease in the ratio of any power of the distances, the accelerative attractions towards the whole
bodies will be as the bodies directly, and those powers of the distances inversely. As if the forces of the
particles decrease in a duplicate ratio of the distances from the corpuscles attracted, and the bodies are as A3

and B3, and therefore both the cubic sides of the bodies, and the distance of the attracted corpuscles from the
A3
A2
B the cubic sides of those bodies. If the forces of the particles decrease in a triplicate ratio of the distances

bodies, are as A and B; the accelerative attractions towards the bodies will be as <X and %, that is, as A and

from the attracted corpuscles, the accelerative attractions towards the whole bodies will be as A3 and g—g, that

A3
is, equal. If the forces decrease in a quadruplicate ratio, the attractions towards the bodies will be as i‘—i and
g—i, that is, reciprocally as the cubic sides A and B. And so in other cases.

Cor. 2. Hence, on the other hand, from the forces with which like bodies attract corpuscles similarly
situated, may be collected the ratio of the decrease of the attractive forces of the particles as the attracted
corpuscle recedes from them; if so be that decrease is directly or inversely in any ratio of the distances.

Proposition Ixxxviii. Theorem xlv.

If the attractive forces of the equal particles of any body be as the distance of the places from the particles,
the force of the whole body will tend to its centre of gravity; and will be the same with the force of a globe,
consisting of similar and equal matter, and having its centre in the centre of gravity.

Let the particles A, B, of the body RSTV attract any corpuscle Z with forces » .
which, supposing the particles to be equal between themselves, are as the g
distances AZ, BZ; but, if they are supposed unequal, are as those particles and i

their distances AZ, BZ, conjunctly, or (if I may so speak) as those particles =
drawn into their distances AZ, BZ respectively. And let those forces be .
expressed by the contents under A x AZ, and B x BZ. Join AB, and let it be cut
in G, so that AG may be to BG as the particle B to the particle A; and G will be * v
the common centre of gravity of the particles A and B. The force A x AZ will

(by Cor. 2, of the Laws) be resolved into the forces A x GZ and A x AG; and the force B x BZ into the forces B
x GZ and B x BG. Now the forces A x AG and B x BG, because A is proportional to B, and BG to AG, are
equal, and therefore having contrary directions destroy one another. There remain then the forces A x GZ
and B x GZ. These tend from Z towards the centre G, and compose the force (A + B) x GZ; that is, the same
force as if the attractive particles A and B were placed in their common centre of gravity G, composing there
a little globe.
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By the same reasoning, if there be added a third particle C, and the force of it be compounded with the
force (A + B) x GZ tending to the centre G, the force thence arising will tend to the common centre of gravity
of that globe in G and of the particle C; that is, to the common centre of gravity of the three particles A, B, C;
and will be the same as if that globe and the particle C were placed in that common centre composing a
greater globe there; and so we may go on in infinitum. Therefore the whole force of all the particles of any
body whatever RSTV is the same as if that body, without removing its centre of gravity, were to put on the
form of a globe. Q.E.D.

Cor. Hence the motion of the attracted body Z will be the same as if the attracting body RSTV were
sphaerical; and therefore if that attracting body be either at rest, or proceed uniformly in a right line, the
body attracted will move in an ellipsis having its centre in the centre of gravity of the attracting body.

Proposition Ixxxix. Theorem xlvi.

If there be several bodies consisting of equal particles whose forces are as the distances of the places from
each, the force compounded of all the forces by which any corpuscle is attracted will tend to the common
centre of gravity of the attracting bodies; and will be the same as if those attracting bodies, preserving
their common centre of gravity, should unite there, and be formed into a globe.

This is demonstrated after the same manner as the foregoing Proposition.

Cor. Therefore the motion of the attracted body will be the same as if the attracting bodies, preserving
their common centre of gravity, should unite there, and be formed into aglobe. And, therefore, if the
common centre of gravity of the attracting bodies be either at rest, or proceed uniformly in a right line, the
attracted body will move in an ellipsis having its centre in the common centre of gravity of the attracting
bodies.

Proposition xe. Problem xliv.

If to the several points of any circle there tend equal centripetal forces, increasing or decreasing in any
ratio of the distances; it is required to find the force with which a corpuscle is attracted, that is, situate any
where in a right line which stands at right angles to the plant of the circle at its centre.

Suppose a circle to be described about the centre A with any interval AD in a
plane to which the right line AP is perpendicular; and let it be required to find the
force with which a corpuscle P is attracted towards the same. From any point E of
the circle, to the attracted corpuscle P, let there be drawn the right line PE. In the
right line PA take PF equal to PE, and make a perpendicular FK, erected at F, to be
as the force with which the point E attracts the corpuscle P. And let the curve line
IKL be the locus of the point K. Let that curve meet the plane of the circle in L. In
PA take PH equal to PD, and erect the perpendicular HI meeting that curve in I;
and the attraction of the corpuscle P towards the circle will be as the area AHIL
drawn into the altitude AP. Q.E.I.

For let there be taken in AE a very small line Ee. Join Pe, and in PE, PA take PC, Pf equal to Pe. And
because the force, with which any point E of the annulus described about the centre A with the interval AE in

the aforesaid plane attracts to itself the body P, is supposed to be as FK; and, therefore, the force with which

AP x FK,
PE ~°

qAPx FK

PE
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that point attracts the body P towards A is as and the force with which the whole annulus attracts

the body P towards A is as the annulus an conjunctly; and that annulus also is as the rectangle



under the radius AE and the breadth Ee, and this rectangle (because PE and AE, Ee and CE are proportional)
is equal to the rectangle PE x CE or PE x Ff; the force with which that annulus attracts the body P towards A

will be as PE x Ff and APPXEFK conjunctly; that is, as the content under Ff x FK x AP, or as the area FKkf

drawn into AP. And therefore the sum of the forces with which all the annuli, in the circle described about
the centre A with the interval AD, attract the body P towards A, is as the whole area AHIKL drawn into AP.
Q.E.D.

Cor. 1. Hence if the forces of the points decrease in the duplicate ratio of the distances, that is, if FK be as

ﬁ and therefore the area AHIKL as i - ﬁ; the attraction of the corpuscle P towards the circle will be as
_PA. . AH
1= oy that is, as PIT

Cor. 2. And universally if the forces of the points at the distances D be reciprocally as any power Dn of the

distances; that is, if FK be as 3 and therefore the area AHIKL as—1— — -1 theattraction of the
Dn PAn-1 PHn-1
corpuscle P towards the circle will be as PAna ~ PHot

Cor. 3. And if the diameter of the circle be increased in infinitum, and the number n be greater than unity;

the attraction of the corpuscle P towards the whole infinite plane will be reciprocally as PAn-2, because the

PA
PAn-1

other term vanishes.

Proposition xeci. Problem xlv.

To find the attraction of a corpuscle situate in the axis of a round solid, to whose several points there tend
equal centripetal forces decreasing in any ratio of the distances whatsoever.

Let the corpuscle P, situate in the axis AB of the solid DECG, be attracted

towards that solid. Let the solid be cut by any circle as RFS, perpendicular to /’R\E
the axis: and in its semi-diameter FS, in any plane PALKB passing through D /./ |
the axis, let there be taken (by Prop. XC) the length FK proportional to the Vi ,B
force with which the corpuscle P is attracted towards that circle. Let the locus pp P ,,jl'
of the point K be the curve line LKI, meeting the planes of the outermost G I l
circles AL and Bl in L and I; and the attraction of the corpuscle P towards ; I‘”'

the solid will be as the area LABI. Q.E.L L s

Cor. 1. Hence if the solid be a cylinder described by the parallelogram ADEB revolved about the axis AB,
and the centripetal forces tending to the several points be reciprocally as the squares of the distances from
the points; the attraction of the corpuscle P towards this cylinder will be as AB - PE + PD. For the ordinate

FK (by Cor. 1, Prop. XC) will be as 1 - II;_I}; The part 1 of this quantity, drawn into the length AB, describes the
PF

PR’ drawn into the length PB describes

the area 1 into (PE — AD) (as may be easily shewn from the quadrature of g L 'I

area 1 x AB; and the other part

the curve LKI); and, in like manner, the same part drawn into the length ".-" - :
PA describes the area1 into (PD — AD), and drawn into AB, the _ &= ! B ' i
difference of PB and PA, describes 1 into (PE — PD), the difference of the : L

e

areas. From the first content 1 x AB take away the last content 1 into (PE ~I

— PD), and there will remain the area LABI equal to 1 into (AB — PE + G ' b
PD). Therefore the force,being proportional to this area, is as 1
AB - PE + PD.
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Cor. 2. Hence also is known the force by which a spheroid AGBC attr
its axis AB. Let NKRM be a conic section whose ordinate ER perpendicu
length of the line PD, continually drawn to the point D in which that

ordinate cuts the spheroid. From the vertices A, B, of the spheriod, let

there be erected to its axis AB the perpendiculars AK, BM, respectively |
equal to AP, BP, and therefore meeting the conic section in K and M;
and join KM cutting off from it the segment KMRK. Let S be the centre
of the spheroid, and SC its greatest semi-diameter; and the force with
which the spheroid attracts the body P will be to the force with which a

sphere described with the diameter AB attracts the same body as
AS x CS2 — PS x KMRK f8 AS3

PS2 + CS2 — AS2 3PS2
forces of the segments of the spheroid.

. And by a calculation founded on the same principles may be found the

Cor. 3. If the corpuscle be placed within the spheroid and in its axis, the DF
attraction will be as its distance from the centre. This may be easily collected 77
from the following reasoning, whether the particle be in the axis or in any

other given diameter. Let AGOF be an attracting spheroid, S its centre, and -,
P the body attracted. Through the body P let there be drawn the semi- '|
diameter SPA, and two right lines DE, FG meeting the spheroid in D and E, \l"

F and G; and let PCM, HLN be the superficies of two interior spheroids R
similar and concentrical to the exterior, the first of which passes through the B

body P, and cuts the right lines DE, FG in B and C; and the latter cuts the

same right lines in H and I, K and L. Let the spheroids have all one common axis, and the parts of the right
lines intercepted on both sides DP and BE, FP and CG, DH and IE, FK and LG, will be mutually equal;
because the right lines DE, PB, and HI, are bisected in the same point, as are also the right lines FG, PC, and
KL. Conceive now DPF, EPG to represent opposite cones described with the infinitely small vertical angles
DPF, EPG, and the lines DH, EI to be infinitely small also. Then the particles of the cones DHKF, GLIE, cut
off by the spheroidical superficies, by reason of the equality of the lines DH and EI, will be to one another as
the squares of the distances from the body P, and will therefore attract that corpuscle equally. And by a like
reasoning if the spaces DPF, EGCB be divided into particles by the superficies of innumerable similar
spheroids concentric to the former and having one common axis, all these particles will equally attract on
both sides the body P towards contrary parts. Therefore the forces of the cone DPF, and of the conic segment
EGCB, are equal, and by their contrariety destroy each other. And the case is the same of the forces of all the
matter that lies without the interior spheroid PCBM. Therefore the body P is attracted by the interior
spheroid PCBM alone, and therefore (by Cor. 3, Prop. LXXII) its attraction is to the force with which the
body A is attracted by the whole spheroid AGOD as the distance PS to the distance AS. Q.E.D.

Proposition xeii. Problem xlvi.

An attracting body being given, it is required to find the ratio of the decrease of the centripetal forces
tending to its several points.

The body given must be formed into a sphere, a cylinder, or some regular figure, whose law of attraction
answering to any ratio of decrease may be found by Prop. LXXX, LXXXI, and XCI. Then, by experiments,
the force of the attractions must be found at several distances, and the law of attraction towards the whole,
made known by that means, will give the ratio of the decrease of the forces of the several parts; which was to
be found.
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Proposition xciii. Theorem xlvii.

If a solid be plane on one side, and infinitely extended on all other sides, and consist of equal particles
equally attractive, whose forces decrease, in the recess from the solid, in the ratio of any power greater
than the square of the distances; and a corpuscle placed towards either part of the plane is attracted by
the force of the whole solid; I say that the attractive force of the whole solid, in the recess from its plane

superficies, will decrease in the ratio of a power whose side is the distance of the corpuscle from the plane,
and its index less by 3 than the index of the power of the distances.

Case 1. Let LGl be the plane by which the solid is terminated. Let
the solid lie on that hand of the plane that is towards I, and let it be

resolved into innumerable planes mHM, nIN, oKO, &c., parallel to ) y/ o

GL. And first let the attracted body C be placed without the solid. o IN_-

Let there be drawn CGHI perpendicular to those innumerable |

planes, andlet the attractive forces of the points of the solid E |1 H |G ic

decrease in the ratio of a power of the distances whose index is the
number n not less than 3. Therefore (by Cor. 3, Prop. XC) the force
with which any plane mHM attracts the point C is reciprocally as 0 7 7z f
CHn-2. In the plane mHM take the length HM reciprocally

proportional to CHn-2, and that force will be as HM. In like manner in the several planes [GL, nIN, 0KO, &c.,
take the lengths GL, IN, KO, &c., reciprocally proportional to CGn-2, CIn-2, CKn-2, &c., and the forces of those
planes will be as the lengths so taken, and therefore the sum of the forces as the sum of the lengths, that is,
the force of the whole solid as the area GLOK produced infinitely towards OK. But that area (by the known
methods of quadratures) is reciprocally as CGn-3, and therefore the force of the whole solid is reciprocally as
CGn-3. Q.E.D.

Case 2. Let the corpuscle C be now placed on that hand of the plane IGL that is

within the solid, and take the distance CK equal to the distance CG. And the part lo N Ll
of the solid LGloKO terminated by the parallel planes IGL, 0KO, will attract the )
corpuscle C, situate in the middle, neither one way nor another, the contrary

actions of the opposite points destroying one another by reason of their equality.
Therefore the corpuscle C is attracted by the force only of the solid situate ,
beyond the plane OK. But this force (by Case 1) is reciprocally as CKn-3, that is,
(because CG, CK are equal) reciprocally as CGn-3. Q.E.D.

kK 1| C G

9 4

Cor. 1. Hence if the solid LGIN be terminated on each side by two infinite parallel places LG, IN, its
attractive force is known, subducting from the attractive force of the whole infinite solid LGKO the attractive
force of the more distant part NIKO infinitely produced towards KO.

Cor. 2. If the more distant part of this solid be rejected, because its attraction compared with the attraction
of the nearer part is inconsiderable, the attraction of that nearer part will, as the distance increases, decrease
nearly in the ratio of the power CGn-3.

Cor. 3. And hence if any finite body, plane on one side, attract a corpuscle situate over against the middle
of that plane, and the distance between the corpuscle and the plane compared with the dimensions of the
attracting body be extremely small; and the attracting body consist of homogeneous particles, whose
attractive forces decrease in the ratio of any power of the distances greater than the quadruplicate; the
attractive force of the whole body will decrease very nearly in the ratio of a power whose side is that very
small distance, and the index less by 3 than the index of the former power. This assertion does not hold
good, however, of a body consisting of particles whose attractive forces decrease in the ratio of the triplicate
power of the distances; because, in that case, the attraction of the remoter part of the infinite body in the
second Corollary is always infinitely greater than the attraction of the nearer part.
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Scholium.

If a body is attracted perpendicularly towards a given plane, and from the law of attraction given, the
motion of the body be required; the Problem will be solved by seeking (by Prop. XXXIX) the motion of the
body descending in a right line towards that plane, and (by Cor. 2, of the Laws) compounding that motion
with an uniform motion performed in the direction of lines parallel to that plane. And, on the contrary, if
there be required the law of the attraction tending towards the plane in perpendicular directions, by which
the body may be caused to move in any given curve line, the Problem will be solved by working after the
manner of the third Problem.

But the operations may be contracted by resolving the ordinates into converging series. As if to a base A
the length B be ordinately applied in any given angle, and that length be as any power of the base A %; and
there be sought the force with which a body, either attracted towards the base or driven from it in the

direction of that ordinate, may be caused to move in the curve line which that ordinate always describes with
its superior extremity; I suppose the base to be increased by a very small part O, and I resolve the ordinate

(A+O)2 into an infinite series AT + %OA‘“I; L mrr;;nmnOOAm;zn &c., and Isuppose the force

proportional to the term of this series in which Ois of two dimensions, that is, to the term
%OOA T-20 Therefore the force sought is as WA““?”, or, which is the same thing, as
mm — mn B m-2n
nn n
quantity 2B°, and therefore is given. Therefore with a given force the body will move in a parabola, as Galileo

. As if the ordinate describe a parabola, m being = 2, and n = 1, the force will be as the given

has demonstrated. If the ordinate describe an hyperbola, m being = 0 — 1, and n = 1, the force will be as 2A-3
or 2B3; and therefore a force which is as the cube of the ordinate will cause the body to move in an
hyperbola. But leaving this kind of propositions, I shall go on to some others relating to motion which I have
hot yet touched upon.
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The Mathematical Principles of Natural Philosophy

by Isaac Newton

Book 1.14
SECTION XIV.

Of the motion of very small bodies when agitated by centripetal forces tending to the several parts of any very great
body.

Proposition xciv. Theorem xlviii.

If two similar mediums be separated from each other by a space terminated on both sides by parallel
planes, and a body in its passage through that space be attracted or impelled perpendicularly towards
either of those mediums, and not agitated or hindered by any other force; and the attraction be every
where the same at equal distances from either plane, taken towards the same hand of the plane; I say, that
the sine of incidence upon either plane will be to the sine of emergence of the other plane in a given ratio.

Case 1. Let Aa and Bb be two parallel planes, and let the body light upon the

first plane Aa in the direction of the line GH, and in its whole passage through Aﬁﬁ R
the intermediate space let it be attracted or impelled towards the medium of iy )
incidence, and by that action let it be made to describe a curve line HI, and let E \\ N

it emerge in the direction of the line IK. Let there be erected IM perpendicular }

to Bb the plane of emergence, and meeting the line of incidence GH prolonged B - LY 5_"5 ¥
in M, and the plane of incidence Aa in R; and let the line of emergence KI be o
produced and meet HM in L. About the centre L, with the interval LI, let a Q"\

circle be described cutting both HM in P and Q, and MI produced in N; and, M

first, if the attraction or impulse be supposed uniform, the curve HI (by what

Galileo has demonstrated) be a parabola, whose property is that of a rectangle under its given latus rectum
and the line IM is equal to the square of HM; and moreover the line HM will be bisected in L. Whence if to
MI there be let fall the perpendicular LO, MO, OR will be equal: and adding the equal lines ON, OI, the
wholes MN, IR will be equal also. Therefore since IR is given, MN is also given, and the rectangle NMI is to
the rectangle under the latus rectum and IM, that is, to HM2 in a given ratio. But the rectangle NMI is equal
to the rectangle PMQ, that is, to the difference of the squares ML2, and PL2 or LI2; and HM?2 hath a given
ratio to its fourth part ML2; therefore the ratio of ML2 — LI2 to ML2 is given, and by conversion the ratio of
LI2 to ML2, and its subduplicate, the ratio of LI to ML. But in every triangle, as LMI, the sines of the angles
are proportional to the opposite sides. Therefore the ratio of the sine of the angle of incidence LMR to the
sine of the angle of emergence LIR is given. Q.E.D.

Case 2. Let now the body pass successively through several spaces
terminated with parallel planes AabB, EbcC, &c., and let it be acted on by a \

force which is uniform in each of them separately, but different in the A \ f:
different spaces; and by what was just demonstrated, the sine of the angle of g S P
incidence on the first plane Aa is to the sine of emergence from the second 1 \\ @

plane Bb in a given ratio; and this sine of incidence upon the second plane
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Bb will be to the sine of emergence from the third plane Cc in a given ratio; and this sine to the sine of
emergence from the fourth plane Dd in a given ratio; and so on in infinitum; and, by equality, the sine of
incidence on the first plane to the sine of emergence from thelast plane in a given ratio. Let now the
intervals of the planes be diminished, and their number be infinitely increased, so that the action of
attraction or impulse, exerted according to any assigned law, may become continual, and the ratio of the sine
of incidence on the first plane to the sine of emergence from the last plane being all along given, will be given
then also. Q.E.D.

Proposition xev. Theorem xlix.

The same things being supposed, I say, that the velocity of the body before its incidence is to its velocity
after emergence as the sine of emergence to the sine of incidence.

Make AH and Id equal, and erect the perpendiculars AG, dK meeting the
lines of incidence and emergence GH, IK, in G and K. In GH take TH equal to
IK, and to the plane Aa let fall a perpendicular Tv. And (by Cor. 2 of the Laws
of Motion) let the motion of the body be resolved into two, one perpendicular

-
to theplanes Aa, Bb, Cc, &c, and another parallel to them. The force of B \\\ ]
attraction or impulse, acting in directions perpendicular to those planes, does py o~ a -
notat all alter the motion in parallel directions; and therefore the body I\L

proceeding with this motion will in equal times go through those equal parallel

intervals that lie between the line AG and the point H, and between the point I and the line dK; that is, they
will describe the lines GH, IK in equal times. Therefore the velocity before incidence is to the velocity after
emergence as GH to IK or TH, that is, as AH or Id to vH; that is (supposing TH or IK radius), as the sine of
emergence to the sine of incidence. Q.E.D.

Proposition xevi. Theorem L.

The same things being supposed, and that the motion before incidence is swifter than afterwards; I say,
that if the line of incidence be inclined continually, the body will be at last reflected, and the angle of
reflexion will be equal to the angle of incidence.

For conceive the body passing between the parallel planes Aa, Bb, Cc,
&c., to describe parabolic arcs as above; and let those arcs be HP, PQ, a
QR, &c. And let the obliquity of the line of incidence GH to the first
plane Aa be such that the sine of incidence may be to the radius of the

.If
ST e —Z7 g
e
- £

Hoas
\

circle whose sine it is, in the same ratio which the same sine of

incidence hath to the sine of emergence from the plane Dd into the space DdeE; and because the sine of
emergence is now become equal to radius, the angle of emergence will be a right one, and therefore the line
of emergence will coincide with the plane Dd. Let the body come to this plane in the point R; and because the
line of emergence coincides with that plane, it is manifest that the body can proceed no farther towards the
plane Ee. But neither can it proceed in the line of emergence Rd; because it is perpetually attracted or
impelled towards the medium of incidence. It will return, therefore, between the planes Cc, Dd, describing
an arc of a parabola QRq, whose principal vertex (by what Galileo has demonstrated) is in R, cutting the
plane Cc in the same angle at g, that it did before at Q; then going on in the parabolic arcs gp, ph, &c., similar
and equal to the former arcs QP, PH, &c., it will cut the rest of the planes in the same angles at p, h, &c., as it
did before in P, H, &c., and will emerge at last with the same obliquity at h with which it first impinged on
that plane at H. Conceive now the intervals of the planes Aa, Bb, Cc, Dd, Ee, &c., to be infinitely diminished,
and the number in finitely increased, so that the action of attraction or impulse, exerted according to any
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assigned law, may become continual; and, the angle of emergence remaining all along equal to the angle of
incidence, will be equal to the same also at last. Q.E.D.

Scholium.

These attractions bear a great resemblance to the reflexions and refractions of light made in a given ratio
of the secants, as was discovered by Snellius; and consequently in a given ratio of the sines, as was exhibited
by Des Cartes. For it is now certain from the phenomena ofJupiter's Satellites, confirmed by the
observations of different astronomers, that light is propagated in succession, and requires about seven or
eight minutes to travel from the sun to the earth. Moreover, the rays of light that are in our air (as lately was
discovered by Grimaldus, by the admission of light into a dark room through a small hole, which I have also
tried) in their passage near the angles of bodies, whether transparent or opaque (such as the circular and
rectangular edges of gold, silver and brass coins, or of knives, or broken pieces of stone or glass), are bent or
inflected round those bodies as if they were attracted to them; and those rays which in their passage come
nearest to the bodies are the most inflected, as if they were most attracted: which tiling I myself have also
carefully observed. And those which pass at greater distances are less inflected; and those at still greater
distances are a little inflected the contrary way, and form three fringes of colours. In the figure s represents
the edge of a knife, or any kind of wedge AsB; and gowog, fnunf, emtme, disld, are rays inflected towards the

knife in the arcs owo, nvn, mtm, Isl; which inflection is greater or less according to their distance from the
knife. Now since this inflection of the rays is performed in the air without the knife, it follows that the rays
which fall upon the knife are first inflected in the air before they touch the knife. And the case is the same of
the rays falling upon glass. The refraction, therefore, is made not in the point of incidence, but gradually, by
a continual inflection of the rays: whichis done partly in the air before they touch the glass, partly (if I
mistake not) within the glass, after they have entered it; as is represented in the rays ckzc, biyb, ahxa, falling
uponr, g, p, and inflected between k and z, i andy, h and x. Therefore because of the analogy there is
between the propagation of the rays of light and the motion of bodies, I thought it not amiss to add the
following Propositions for optical uses: not at all considering the nature of the rays of light, or inquiring
whether they are bodies or not; but only determining the trajectories of bodies which are extremely like the
trajectories of the rays.

Proposition xevii. Problem xlvii.

Supposing the sine of incidence upon any superficies to be in a given ratio to the sine of emergence; and
that the inflection of the paths of those bodies near that superficies is performed in a very short space,
which may be considered as a point; it is required to determine such a superficies as may cause all the

corpuscles issuing from any one given place to converge to another given place.

Let A be the place from whence the corpuscles diverge; B the place to which they should converge; CDE
the curve line which by its revolution round the axis AB describes the superficies sought; D, E, any two
points of that curve: and EF, EG, perpendiculars let fall on the paths of the bodies AD, DB. Let the point D
approach to and coalesce with the point E; and the ultimate ratio of the line DF by which AD is increased, to
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the line DG by which DB is diminished, will be the same as that of thi oo T s i
emergence. Therefore the ratio of the increment of the line AD to the )
decrement of the line DB is given; and therefore if in the axis AB there be

taken any where the point C through which the curve CDE must pass,
and CM the increment of AC be taken in that given ratio to CN the
decrement of BC, and from the centres A, B, with the intervals AM, BN, there be described two circles

A ONM N

cutting each other in D; that point D will touch the curve sought CDE, and, by touching it any where at
pleasure, will determine that curve. Q.E.IL

Cor. 1. By causing the point A or B to go off sometimes in infinitum, and sometimes to move towards other
parts of the point C, will be obtained all those figures which Cartesius has exhibited in his Optics and
Geometry relating to refractions. The invention of which Cartesius having thought fit to conceal, is here laid
open in this Proposition.

Cor. 2. If a body lighting on any superficies CD in the direction of a
right line AD, drawn according to any law, should emerge in the direction
of another right line DK; and from the point C there be drawn curve lines
CP, CQ, always perpendicular to AD, DK; the increments of the lines PD,
QD, and therefore the lines themselves PD, QD, generated by those
increments, will be as the sines of incidence and emergence to each other,

and é contra.

Proposition xcviii. Problem xlviii.

The same things supposed; if round the axis AB any attractive superficies be described as CD, regular or
irregular, through which the bodies issuing from the given place A must pass; it is required to find a
second attractive superficies EF, which may make those bodies converge to a given place B.

Let a line joining AB cut the first superficies in C

/ and the second in E, the point D being taken any how

= i at pleasure. And supposing the sine of incidence on

; -._, R K the first superficies to the sine of emergence from the

Na\_\ same, and the sine of emergence from the second

A~ j R B G superficies to the sine of incidence on the same, to be
" TN

as any given quantity M to another given quantity N;
then produce AB to G, so that BG may be to CE as M — N to N; and AD to H, so that AH may be equal to AG;
and DF to K, so that DK may be to DH as N to M. Join KB, and about the centre D with the interval DH
describe a circle meeting KB produced in L, and draw BF parallel to DL; and the point F will touch the line
EF, which, being turned round the axis AB, will describe the superficies sought. Q.E.F.

For conceive the lines CP, CQ, to be every where perpendicular to AD, DF, and the lines ER, ES to FB, FD
respectively, and therefore QS to be always equal to CE; and (by Cor. 2, Prop. XCVII) PD will be to QD as M
to N, and therefore as DL to DK, or FB to FK; and by division as DL — FB or PH — PD - FB to FD or FQ -
QD; and by composition as PH — FB to FQ, that is (because PH and CG, QS and CE, are equal), as CE + BG -
FR to CE — FS. But (because BG is to CE as M — N to N) it comes to pass also that CE + BG is to CE as M to
N; and therefore, by division, FR is to FS as M to N; and therefore (by Cor. 2, Prop XCVII) the superficies EF
compels a body, falling upon it in the direction DF, to go on in the line FR to the place B. Q.E.D.

Scholium.
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In the same manner one may go on to three or more superficies. But of all figures the spherical is the most
proper for optical uses. If the object glasses of telescopes were made of two glasses of a sphaerical figure,
containing water between them, it is not unlikely that the errors of the refractions made in the extreme parts
of the superficies of the glasses may be accurately enough corrected by the refractions of the water. Such
object glasses are to be preferred before elliptic and hyperbolic glasses, not only because they may be formed
with more ease and accuracy, but because the pencils of rays situate without the axis of the glass would be
more accurately refracted by them. But the different refrangibility of different rays is the real obstacle that
hinders optics from being made perfect by sphaerical or any other figures. Unless the errors thence arising
can be corrected, all the labour spent in correcting the others is quite thrown away.

(4

139/296



The Mathematical Principles of Natural Philosophy

by Isaac Newton

Book 2.0

Book 11.

OF THE MoTION OF BODIES.

140/296



The Mathematical Principles of Natural Philosophy

by Isaac Newton

Book 2.1
SEcTtiOoN 1.

Of the motion of bodies that are resisted in the ratio of the velocity.

Proposition i. Theorem I.

If a body is resisted in the ratio of its velocity, the motion lost by resistance is as the space gone over in its
motion.

For since the motion lost in each equal particle of time is as the velocity, that is, as the particle of space
gone over, then, by composition, the motion lost in the whole time will be as the whole space gone over.
Q.E.D.

Cor. Therefore if the body, destitute of all gravity, move by its innate force only in free spaces, and there be
given both its whole motion at the beginning, and also the motion remaining after some part of the way is
gone over, there will be given also the whole space which the body can describe in an infinite time. For that
space will be to the space now described as the whole motion at the beginning is to the part lost of that
motion.

Lemma 1.

Quantities proportional to their differences are continually proportional.

Let Abeto A- BasBtoB - Cand CtoC - D, &c., and, by conversion, A will be to B as B to C and C to D,
&c. Q.E.D.

Proposition ii. Theorem ii.

If a body is resisted in the ratio of its velocity, and moves, by its vis insita only, through a similar medium,
and the times be taken equal, the velocities in the beginning of each of the times are in a geometrical
progression, and the spaces described in each of the times are as the velocities.

Case 1. Let the time be divided into equal particles; and if at the very beginning of each particle we suppose
the resistance to act with one single impulse which is as the velocity, the decrement of the velocity in each of
the particles of time will be as the same velocity. Therefore the velocities are proportional to their
differences, and therefore (by Lem. 1, Book II) continually proportional. Therefore if out of an equal number
of particles there be compounded any equal portions of time, the velocities at the beginning of those times
will be as terms in a continued progression, which are taken by intervals, omitting every where an equal
number of intermediate terms. But the ratios of these terms are compounded of the equal ratios of the
intermediate terms equally repeated, and therefore are equal. Therefore the velocities, being proportional to
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those terms, are in geometrical progression. Let those equal particles of time be diminished, and their
number increased in infinitum, so that the impulse of resistance may become continual; and the velocities at
the beginnings of equal times, always continually proportional, will be also in this case continually
proportional. Q.E.D.

Case 2. And, by division, the differences of the velocities, that is, the parts of the velocities lost in each of
the times, are as the wholes; but the spaces described in each of the times are as the lost parts of the
velocities (by Prop. 1, Book I), and therefore are also as the wholes. Q.E.D.

Corol. Hence if to the rectangular asymptotes AC, CH, the hyperbola BG is described, and

H AB, DG be drawn perpendicular to the asymptote AC, and both the velocity of the body, and
A the resistance of the medium, at the very beginning of the motion, be expressed by any given
oA line AC, and, after some time is elapsed, by the indefinite line DC; the time may be expressed

by the area ABGD, and the space described in that time by the line AD. For if that area, by
the motion of the point D, be uniformly increased in the same manner as the time, the right line DC will
decrease in a geometrical ratio in the same manner as the velocity; and the parts of the rightline AC,
described in equal times, will decrease in the same ratio.

Proposition iii. Problem I.

To define the motion of a body which, in a similar medium, ascends or descends in a right line, and is
resisted in the ratio of its velocity, and acted upon by an uniform force of gravity.

The body ascending, let the gravity be expounded by any given rectangle
BACH; and the resistance of the medium, at the beginning of the ascent, by the
rectangle BADE, taken on the contrary side of theright line AB. Through the

+ point B, with the rectangular asymptotes AC, CH, describe an hyperbola, cutting

s B / . the perpendiculars DE, de, in G, g; and the body ascending will in the time DGgd

g i3 ]]1 describe the space EGge; in the time DGBA, the space of the whole ascent EGB;

DA A XI £ C in the time ABKI, the space of descent BFK; and in the time IKki the space of

descent KFfk; and the velocities of the bodies (proportional to the resistance of
the medium) in these periods of time will be ABED, ABed, O, ABFI, ABfi respectively; and the greatest
velocity which the body can acquire by descending will be BACH.

™

For let the rectangle BACH be resolved into in numerable rectangles Ak, KiI, Lm, '
Mn, &c., which shall be as the increments of the velocities produced in so many equal
times; then will O, Ak, Al, Am, An, &c., be as the whole velocities; and therefore (by

Z,
supposition) as the resistances of the medium in the beginning of each of the equal B
times. Make AC to AK, or ABHC to ABKK, as the force of gravity to the resistance in 7F_§
the beginning of the second time; then from the force of gravity subduct the ¢
AKLMN

resistances, and ABHC, KkHC, LIHC, MmHC, &c., will be as the absolute forces with

which the body is acted upon in the beginning of each of the times, and therefore (by Law I) as the
increments of the velocities, that is, as the rectangles Ak, KI, Lm, Mn, &c., and therefore (by Lem. 1, Book II)
in a geometrical progression. Therefore, if the right lines Kk, LI, Mm, Nn, &c., are produced so as to meet the
hyperbola in g, r, s, t, &c. the areas ABgK, KgrL, LrsM, MstN, &c., will be equal, and therefore analogous to
the equal times and equal gravitating forces. But the area ABgK (by Corol. 3, Lem. VII and VIII, Book I) is to
the area Bkq as Kq to V2kq, or AC to Y2AK, that is, as the force of gravity to the resistance in the middle of the
first time. And by the like reasoning, the areas gKLr, rLMs, sSMNt, &c., are to the areas gklr, rlms, smnt, &c.,
as the gravitating forces to the resistances in the middle of the second, third, fourth time, and so on.
Therefore since the equal areas BAKq, gKLr, rLMs, sMNt, &c., are analogous to the gravitating forces, the
areas Bkq, gklr, rlms, smnt, &c., will be analogous to the resistances in the middle of each of the times, that
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is (by supposition), to the velocities, and so to the spaces described. Take the sums of the analogous
quantities, and the areas Bkgq, Blr, Bms, But, &c., will be analogous to the whole spaces described; and also
the areas ABgK, ABrL, ABsM, ABtN, &c., to the times. Therefore the body, in descending, will in any time
ABrL describe the space Blr, and in the time LrtN the space rint. Q.E.D. And the like demonstration holds
in ascending motion.

Corol. 1. Therefore the greatest velocity that the body can acquire by falling is to the velocity acquired in
any given time as the given force of gravity which perpetually acts upon it to the resisting force which
opposes it at the end of that time.

Corol. 2. But the time being augmented in an arithmetical progression, the sum of that greatest velocity
and the velocity in the ascent, and also their difference in the descent, decreases in a geometrical
progression.

Corol. 3. Also the differences of the spaces, which are described in equal differences of the times, decrease
in the same geometrical progression.

Corol. 4. The space described by the body is the difference of two spaces, whereof one is as the time taken
from the beginning of the descent, and the other as the velocity; which [spaces] also at the beginning of the
descent are equal among themselves.

Proposition iv. Problem ii.

Supposing the force of gravity in any similar medium to be uniform, and to tend perpendicularly to the
plane of the horizon; to define the motion of a projectile therein, which suffers resistance proportional to its
velocity.

Let the projectile go from any place D in the direction of any right line
DP, and let its velocity at the beginning of the motion be expounded by
the length DP. From the point P let fall the perpendicular PC on the
horizontal line DC, and cut DC in A, so that DA may be to AC as the
resistance of the medium arising from the motion upwards at the
beginning to the force of gravity; or (which comes to the same) so that
the rectangle under DA and DP may be to that under AC and CP as the
whole resistance at the beginning of the motion to the force of gravity.

With the asymptotes DC, CP describe any hyperbola GTBS cutting the
I-R perpendiculars DG, AB in G and B; complete the parallelogram DGKC,
and let its side GK cut AB in Q. Take a line N in the same ratio to QB as
DC is in to CP; and from any point R of the right line DC erect RT

N

] perpendicular to it, meeting the hyperbola in T, and the right lines EH,
2 d / L GK, DP in I, t, and V; in that perpendicular take Vr equal to t%T, or

= Lo . GTIE Ce
- /"I ~ o which is the same thing, take Rr equal to N and the projectile in the
W T \\ E time DRTG will arrive at the point r describing the curve line DraF, the
Q \ ¢ locus of the point r; thence it will come to its greatest height a in the
RA B perpendicular AB; and afterwards ever approach to the asymptote PC.

And its velocity in any point r will be as the tangent rL to the curve. Q.E.L

For N is to QB as DC to CP or DR to RV, and therefore RV is equal to %XQB, and Rr (thatis, RV - Vr, or

DR x QI\ITE -tGT ) is equal to DR x ABN— RDGT

Laws, Cor. 2), distinguish the motion of the body into two others, one of ascent, the other lateral. And since
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the resistance is as the motion, let that also be distinguished into two parts proportional and contrary to the
parts of the motion: and therefore the length described by the lateral motion will be (by Prop. II, Book II) as
the line DR, and the height (by Prop. III, Book II) as the area DR x AB — RDGT, that is, as the line Rr. But in
the very beginning of the motion the area RDGT is equal to the rectangle DR x AQ, and therefore that line Rr

(or DRXAB I:TDR X AQ y will then be to DR as AB — AQ or QB to N, that is, as CP to DC; and therefore as the

motion upwards to the motion lengthwise at the beginning. Since, therefore, Rr is always as the height, and
DR always as the length, and Rr is to DR at the beginning as the height to the length, it follows, that Rr is
always to DR as the height to the length; and therefore that the body will move in the line DraF, which is the
locus of the point . Q.E.D.

Cor. 1. Therefore Rr is equal to

DR x AB
N

be produced till it meets DY in X; Xr will be equal to

DR x AB _ RDGT
N N

, that is, if the parallelogram ACPY be completed, and DY cutting CP in Z be drawn, and RT

RDGT
N

, and therefore if RT be produced to X so that RX may be
equal to

, and therefore proportional to the time.

Cor. 2. Whence if innumerable lines CR, or, which is the same, innumerable lines ZX, be taken in a
geometrical progression, there will be as many lines Xr in an arithmetical progression. And hence the curve
DraF is easily delineated by the table of logarithms.

Cor. 3. If a parabola be constructed to the vertex D, and the diameter DG produced downwards, and its
latus rectum is to 2 DP as the whole resistance at the beginning of the notion to the gravitating force, the
velocity with which the body ought to go from the place D, in the direction of the right line DP, so as in an
uniform resisting medium to describe the curve DraF, will be the same as that with which it ought to go
from the same place D in the direction of the same right line DP, so as to describe a parabola in a non-

resisting medium. For the latus rectum of this parabola, at the very
DVz, tGT DR x Tt
Vo and Vr is N oN

line, which, if drawn, would touch the hyperbola GTS in G, is parallel

to DK, and therefore Tt is CKS(CDR and N is QB(;(PDC And therefore —_

. DR2 x CK x CP
Vris equal to “aDCzx QB that is, (because DR and DC, DV and DP
DV

DV2x CKx CP,
“2DPzx QB and the latus rectum Ny comes

tiﬂgﬁz XC%B, that is (because QB and CK,DA, and AC are
2DP2 x DA
ACxCP ’

AC; that is, as the resistance to the gravity. Q.E.D.

beginning of the motion, is But a right 3

are proportionals), to

proportional), and therefore ist to 2DP as DP x DA to CP x

Cor. 4. Hence if a body be projected from any place D with a given velocity, in the direction of a right line
DP given by position, and the resistance of the medium, at the beginning of the motion, be given, the curve
DraF, which that body will describe, may be found. For the velocity being given, the latus rectum of the
parabola is given, as is well known. And taking 2DP to that latus rectum, as the force of gravity to the
resisting force, DP is also given. Then cutting DC in A, so that CP x AC may be to DP x DA in the same ratio
of the gravity to the resistance, the point A will be given. And hence the curve DraF is also given.

Cor. 5. And, on the contrary, if the curve D raF be given, there will be given both the velocity of the body
and the resistance of the medium in each of the places r. For the ratio of CP x AC to DP x DA being given,
there is given both the resistance of the medium at the beginning of the motion, and the latus rectum of the
parabola; and thence the velocity at the beginning of the motion is given also. Then from the length of the
tangent L there is given both the velocity proportional to it, and the resistance proportional to the velocity in
any place r.

Cor. 6. But since the length 2DP is to the latus rectum of the parabola as the gravity to the resistance in D;
and, from the velocity augmented, the resistance is augmented in the same ratio, but the latus rectum of the
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parabola is augmented in the duplicate of that ratio, it is plain that the
length 2DP is augmented in that simple ratio only; and is therefore
always proportional to the velocity; nor will it be augmented or
diminished by the change of the angle CDP, unless the velocity be also
changed.

Cor. 7. Hence appears the method of
determining the curve DraF nearly from
the phenomena, and thence collecting the

I-R resistance and velocity with which the
body is projected. Let two similar and
equal bodies be projected with the same

—"E‘- g velocity, from the place D, in different
w1 / I, angles CDP, CDp; and let the places F,f,
- where they fall upon the horizontal plane Ty 7 F C
/?’ 1 ~ | DC, be known. Then taking any length for
b ¥ i :
W T \ DP or Dp suppose the resistance in D to T
Q ‘\ E be to the gravity in any ratio whatsoever, m N
RA ¥ and let that ratio be expounded by any MM
length SM. Then, by computation, from that assumed length DP, find the
lengths DP, Df; and from the ratio DF—}fT, found by calculation, subduct the same

ratio as found by experiment; and let the difference be expounded by the perpendicular MN. Repeat the
same a second and a third time, by assuming always a new ratio SM of the resistance to the gravity, and
collecting a new difference MN. Draw the affirmative differences on one side of the right line SM, and the
negative on the other side; and through the points N, N, N, draw a regular curve NNN. cutting the right line
SMMM in X, and SX will be the true ratio of the resistance to the gravity, which was to be found. From this
ratio the length DF is to be collected by calculation; and a length, which is to the assumed length DP as the
length DF known by experiment to the length DF just now found, will be the true length DP. This being
known, you will have both the curve line DraF which the body describes, and also the velocity and resistance
of the body in each place.

Scholium.

But, yet, that the resistance of bodies is in the ratio of the velocity, is more a mathematical hypothesis than
a physical one. In mediums void of all tenacity, the resistances made to bodies are in the duplicate ratio of
the velocities. For by the action of a swifter body, a greater motion in proportion to a greater velocity is
communicated to the same quantity of the medium in a less time; and in an equal time, by reason of a
greater quantity of the disturbed medium, a motion is communicated in the duplicate ratio greater; and the
resistance (by Law II and III) is as the motion communicated. Let us, therefore, see what motions arise from
this law of resistance.
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The Mathematical Principles of Natural Philosophy

by Isaac Newton

Book 2.2
SECTION 11.

Of the motion of bodies that are resisted in the duplicate ratio of their velocities.

Proposition v. Theorem iii.

If a body is resisted in the duplicate ratio of its velocity, and moves by its innate force only through a
similar medium; and the times be taken in a geometrical progression, proceeding from less to greater
terms: I say, that the velocities at the beginning of each of the times are in the same geometrical
progression inversely; and that the spaces are equal, which are described in each of the times.

For since the resistance of the medium is proportional to the square of the velocity,
and the decrement of the velocity is proportional to the resistance: if the time be
divided into innumerable equal particles, the squares of the velocities at the
beginning of each of the times will be proportional to the differences of the same
velocities. Let those particles of time be AK, KL, LM, &c., taken in the right line CD; 4
and erect the perpendiculars AB, Kk, LI, Mm, &c., meeting the hyperbola BkImG, |N
described with the centre C, and the rectangular asymptotes CD, CH, in B, k, [, m, C MT n
&c.; then AB will be to Kk as CK to CA, and, by division, AB — Kk to Kk as AK to CA,
and alternately, AB — Kk to AK as Kk to CA; and therefore as AB x Kk to AB x CA. Therefore since AK and AB
x CA are given, AB — Kk will be as AB x KA; and, lastly, when AB and Kk coincide, as AB2. And, by the like
reasoning, Kk — LI, LI - Mm, &c., will be as Kk2, LI2, &c. Therefore the squares of the lines AB, Kk, LI, Mm,
&c., are as their differences; and, therefore, since the squares of the velocities were shewn above to be as

their differences, the progression of both will be alike. This being demonstrated it follows also that the areas
described by these lines are in a like progression with the spaces described by these velocities. Therefore if
the velocity at the beginning of the first time AK be expounded by the line AB, and the velocity at the
beginning of the second time KL by the line Kk and the length described in the first time by the area AKkB,
all the following velocities will be expounded by the following lines LI, Mm, &c. and the lengths described, by
the areas KI, Lm. &c. And, by composition, if the whole time be expounded by AM, the sum of its parts, the
whole length described will be expounded by AMmB the sum of its parts. Now conceive the time AM to be
divided into the parts AK, KL, LM, &c. so that CA, CK, CL, CM, &c. may be in a geometrical progression; and
those parts will be in the same progression, and the velocities AB, Kk, LI, Mm, &c., will be in the same
progression inversely, and the spaces described Ak, KI, Lm, &c., will be equal. Q.E.D.

Cor. 1. Hence it appears, that if the time be expounded by any part AD of the asymptote, and the velocity in
the beginning of the time by the ordinate AB, the velocity at the end of the time will be expounded by the
ordinate DG; and the whole space described by the adjacent hyperbolic area ABGD; and the space which any
body can describe in the same time AD, with the first velocity AB, in a non-resisting medium, by the
rectangle AB x AD.

Cor 2. Hence the space described in a resisting medium is given, by taking it to the space described with
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the uniform velocity AB in a nonresisting medium, as the hyperbolic area ABGD to the rectangle AB x AD.

Cor. 3. The resistance of the medium is also given, by making it equal, in the very beginning of the motion,
to an uniform centripetal force, which could generate, in a body falling through a non-resisting medium, the
velocity AB in the time AC. For if BT be drawn touching the hyperbola in B, and meeting the asymptote in T,
the right line AT will be equal to AC, and will express the time in which the first resistance, uniformly
continued, may take away the whole velocity AB

Cor. 4. And thence is also given the proportion of this resistance to the force of gravity, or any other given
centripetal force.

Cor. 5. And, vice versa, if there is given the proportion of the resistance to any given centripetal force, the
time AC is also given, in which a centripetal force equal to the resistance may generate any velocity as AB;
and thence is given the point B, through which the hyperbola, having CH, CD for its asymptotes, is to be
described; as also the space ABGD, which a body, by beginning its motion with that velocity AB, can describe
in any time AD, in a similar resisting medium.

Proposition vi. Theorem iv.

Homogeneous and equal spherical bodies, opposed by resistances that are in the duplicate ratio of the
velocities, and moving on by their innate force only, will, in times which are reciprocally as the velocities
at the beginning, describe equal spaces, and lose parts of their velocities proportional to the wholes.

To the rectangular asymptotes CD, CH describe any hyperbola BbEe, cutting
H the perpendiculars AB, ab, DE, de in B, b, E, e; let the initial velocities be
expounded by the perpendiculars AB, DE, and the times by the lines Aa, Dd.

. 4 - Therefore as Aa is to Dd, so (by the hypothesis) is DE to AB, and so (from the
- nature of the hyperbola) is CA to CD; and, by composition, so is Ca to Cd.

Therefore the areas ABba, DEed, that is, the spaces described, are equal among

themselves, and the first velocities AB, DE are proportional to the last ab, de;
C ar Da and therefore, by division, proportional to the parts of the velocities lost, AB —
ab, DE —de. Q.E.D.

Proposition vii. Theorem V.

If spherical bodies are resisted in the duplicate ratio of their velocities, in times which are as the first
motions directly, and the first resistances inversely, they will lose parts of their motions proportional to
the wholes, and will describe spaces proportional to those times and the first velocities conjunctly.

For the parts of the motions lost are as the resistances and times conjunctly. Therefore, that those parts
may be proportional to the wholes, the resistance and time conjunctly ought to be as the motion. Therefore
the time will be as the motion directly and the resistance inversely. Wherefore the particles of the times
being taken in that ratio, the bodies will always lose parts of their motions proportional to the wholes, and
therefore will retain velocities always proportional to their first velocities. And because of the given ratio of
the velocities, they will always describe spaces which are as the first velocities and the times conjunctly.

Q.E.D.

Cor. 1. Therefore if bodies equally swift are resisted in a duplicate ratio of their diameters, homogeneous
globes moving with any velocities whatsoever, by describing spaces proportional to their diameters, will lose
parts of their motions proportional to the wholes. For the motion of each globe will be as its velocity and
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mass conjunctly, that is, as the velocity and the cube of its diameter; the resistance (by supposition) will be
as the square of the diameter and the square of the velocity conjunctly; and the time (by this proposition) is
in the former ratio directly, and in the latter inversely, that is, as the diameter directly and the velocity
inversely; and therefore the space, which is proportional to the time and velocity is as the diameter.

Cor. 2. If bodies equally swift are resisted in a sesquiplicate ratio of their diameters, homogeneous globes,
moving with any velocities whatsoever, by describing spaces that are in a sesquiplicate ratio of the diameters,
will lose parts of their motions proportional to the wholes.

Cor. 3. And universally; if equally swift bodies are resisted in the ratio of any power of the diameters, the
spaces, in which homogeneous globes, moving with any velocity whatsoever, will lose parts of their motions
proportional to the wholes, will be as the cubes of the diameters applied to that power. Let those diameters
be D and E; and if the resistances, where the velocities are supposed equal, are as Dn and En; the spaces in
which the globes, moving with any velocities whatsoever, will lose parts of their motions proportional to the
wholes, will be as D3-n and E3-n. And therefore homogeneous globes, in describing spaces proportional to
D3-n and E3-n, will retain their velocities in the same ratio to one another as at the beginning.

Cor. 4. Now if the globes are not homogeneous, the space described by the denser globe must be
augmented in the ratio of the density. For the motion, with an equal velocity, is greater in the ratio of the
density, and the time (by this Prop.) is augmented in the ratio of motion directly, and the space described in
the ratio of the time.

Cor. 5. And if the globes move in different mediums, the space, in a medium which, caeteris paribus,
resists the most, must be diminished in the ratio of the greater resistance. For the time (by this Prop.) will be
diminished in the ratio of the augmented resistance, and the space in the ratio of the time.

Lemma ii.

The moment of any genitum is equal to the moments of each of the generating sides drawn into the indices
of the powers of those sides, and into their co-efficients continually.

I call any quantity a genitum which is not made by addition or subduction of divers parts, but is generated
or produced in arithmetic by the multiplication, division, or extraction of the root of any terms whatsoever;
in geometry by the invention of contents and sides, or of the extremes and means of proportionals.
Quantities of this kind are products, quotients, roots, rectangles, squares, cubes, square and cubic sides, and
the like. These quantities I here consider as variable and indetermined, and increasing or decreasing, as it
were, by a perpetual motion or flux; and I understand their momentaneous increments or decrements by the
name of moments; so that the increments may be esteemed as added or affirmative moments; and the
decrements as subducted or negative ones. But take care not to look upon finite particles as such. Finite
particles are not moments, but the very quantities generated by the moments. We are to conceive them as
the just nascent principles of finite magnitudes. Nor do we in this Lemma regard the magnitude of the
moments, but their first proportion, as nascent. It will be the same thing, if, instead of moments, we use
either the velocities of the increments and decrements (which may also be called the motions, mutations,
and fluxions of quantities), or any finite quantities proportional to those velocities. The co-efficient of any
generating side is the quantity which arises by applying the genitum to that side.

Wherefore the sense of the Lemma is, that if the moments of any quantities A, B, C, &c., increasing or
decreasing by a perpetual flux, or the velocities of the mutations which are proportional to them, be called a,
b, ¢, &c., the moment or mutation of the generated rectangle AB will be aB + bA; the moment of the
generated content ABC will be aBC + bAC + cAB; and the moments of the generated powers A2, A3, A4, Avz,
A3/, AVs, A%, A-1, A2, A-2 will be 2aA, 3aA2, 4aA3, V2aA-Y2, 3/,aAY2, Y3aA-%, Y3aA-"5, —aA-2, —2aA-3,
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—-l2aA-3/- respectively; and in general, that the moment of any power A I%, will be I% aA nr_nm' Also, that the
moment of the generated quantity A2B bill be 2aAB + bA2; the moment of the generated quantity A3 B4 C2

will be 3aA2 B4 C2 + 4bA3B3C2 + 2cA3B4C; and the moment of the generated quantity% or A3B-2 will be

3aA2B-2-2bA3B-3; and so on. The Lemma is thus demonstrated.

Case 1. Any rectangle, as AB, augmented by a perpetual flux, when, as yet, there wanted of the sides A and
B half their moments Y2a and Y2b, was A—V2a into B—V2b, or AB — Y2a B — V2b A + Yaab; but as soon as the
sides A and B are augmented by the other half moments, the rectangle becomes A + Y2a into B + V2b, or AB
+ Y2a B + Y2b A + Yaab. From this rectangle subduct the former rectangle, and there will remain the excess
aB + bA. Therefore with the whole increments a and b of the sides, the increment aB + bA of the rectangle is
generated. Q.E.D.

Case 2. Suppose AB always equal to G, and then the moment of the content ABC or GC (by Case 1) will be
gC + ¢G, that is (putting AB and aB + bA for G and g), aBC + bAC + cAB. And the reasoning is the same for
contents under ever so many sides. Q.E.D.

Case 3. Suppose the sides A, B, and C, to be always equal among themselves; and the moment aB + bA, of
A2, that is, of the rectangle AB, will be 2aA; and the moment aBC + bAC + cAB of A3, that is, of the content
ABC, will be 3aA2. And by the same reasoning the moment of any power An is naAn-1. Q.E.D
1 1
A A
the moment of 1, that is, nothing. Therefore the moment of i, or of A-1, is

Case 4. Therefore since - into A is 1, the moment of -- drawn into A, together withi drawn into a, will be

—a 1
A2’ An

is1, the moment of ﬁ drawn into An together withﬁ into naAn-1 will be nothing. And, therefore, the

And generally since - into An

1 . g __na
moment ofAn or A-n will be Anil’ Q.E.D.
Case 5. And since A2 into A% is A, the moment of A% drawn into 2A% will be a (by Case 3); and,

therefore, the moment of A%z will be 5 Aa1 7, 0r Y2aA-Y2. And, generally, putting AT equal to B, then Am will
2

be equal to Bn, and therefore maAm-1 equal to nbBn-1, and maA-1 equal to nbB-1, or nbA- %; and therefore

%aA%‘ is equal to b, that is, equal to the moment of AT. Q.E.D.

Case 6. Therefore the moment of any generated quantity AmBn is the moment of Am drawn into Bn,
together with the moment of Bn drawn into Am, that is, maAm-1 Bn + nbBn-1 Am; and that whether the
indices m and n of the powers be whole numbers or fractions, affirmative or negative. And the reasoning is
the same for contents under more powers. Q.E.D.

Cor. 1. Hence in quantities continually proportional, if one term is given, the moments of the rest of the
terms will be as the same terms multiplied by the number of intervals between them nd the given term. Let
A, B, C, D, E, F, be continually proportional; then if the term C is given, the moments of the rest of the terms
will be among themselves as —2A, -B, D, 2E, 3F.

Cor. 2. And if in four proportionals the two means are given, the moments of the extremes will be as those
extremes. The same is to be understood of the sides of any given rectangle.

Cor. 3. And if the sum or difference of two squares is given, the moments of the sides will be reciprocally as
the sides.

Scholium.
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In a letter of mine to Mr. J. Collins, dated December 10, 1672, having described a method of tangents,
which I suspected to be the same with Slusius's method, which at that time was not made public, I subjoined
these words: This is one particular, or rather a Corollary, of a general method, which extends itself,
without any troublesome calculation, not only to the drawing of tangents to any curve lines, whether
geometrical or mechanical, or any how respecting right lines or other curves, but also to the resolving
other abstruser kinds of problems about the crookedness, areas, lengths, centres of gravity of curves, &c.;
nor is it (as Hudden's method de Maximis & Minimis) limited to equations which are free from surd
quantities. This method I have interwoven with that other of working in equations, by reducing them to
infinite series. So far that letter. And these last words relate to a treatise I composed on that subject in the
year 1671. The foundation of that general method is contained in the preceding Lemma.

Proposition viii. Theorem vi.

If a body in an uniform medium, being uniformly acted upon by the force of gravity, ascends or descends
in a right line; and the whole space described be distinguished into equal parts, and in the beginning of
each of the parts (by adding or subducting the resisting force of the medium to or from the force of gravity,
when the body ascends or descends] you collect the absolute forces; I say, that those absolute forces are in
a geometrical progression.

For let the force of gravity be expounded by the given line AC; the force of
S resistance by the indefinite line AK; the absolute force in the descent of the body by
_ the difference KC: the velocity of the body by a line AP, which shall be a mean

|“|‘~'~ 7t proportional between AK and AC, and therefore in a subduplicate ratio of the
| _l_l Ti ! resistance; the increment of the resistance made in a given particle of time by the
¢ QPIKIAzA lineola KL, and the contemporaneous increment of the velocity by the lineola PQ;

and with the centre C, and rectangular asymptotes CA, CH, describe any hyperbola BN'S meeting the erected
perpendiculars AB, KN, LO in B, N and O. Because AK is as AP2, the moment KL of the one will be as the
moment 2APQ of the other, that is, as AP x KC; for the increment PQ of the velocity is (by Law II)
proportional to the generating force KC. Let the ratio of KL be compounded with the ratio KN, and the
rectangle KL x KN will become as AP x KC x KN; that is (because the rectangle KC x KN is given), as AP. But
the ultimate ratio of the hyperbolic area KNOL to the rectangle KL x KN becomes, when the points K and L
coincide, the ratio of equality. Therefore that hyperbolic evanescent area is as AP. Therefore the whole
hyperbolic area ABOL is composed of particles KNOL which are always proportional to the velocity AP; and
therefore is itself proportional to the space described with that velocity. Let that area be now divided into
equal parts as ABMI, IMNK, KNOL, &c., and the absolute forces AC, IC, KC, LC, &c., will be in a geometrical
progression. Q.E.D. And by a like reasoning, in the ascent of the body, taking, on the contrary side of the
point A, the equal areas ABmi, imnk, knol, &c., it will appear that the absolute forces AC, iC, kC, IC, &c., are
continually proportional. Therefore if all the spaces in the ascent and descentare taken equal, all the
absolute forces [C, kC, iC, AC, IC, KC, LC, &c., will be continually proportional. Q.E.D.

Cor. 1. Hence if the space described be expounded by the hyperbolic area ABNK, the force of gravity, the
velocity of the body, and the resistance of the medium, may be expounded by the lines AC, AP, and AK
respectively; and vice versa.

Cor. 2. And the greatest velocity which the body can ever acquire in an infinite descent will be expounded
by the line AC.

Cor. 3. Therefore if the resistance of the medium answering to any given velocity be known, the greatest
velocity will be found, by taking it to that given velocity in a ratio subduplicate of the ratio which the force of
gravity bears to that known resistance of the medium.
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Proposition ix. Theorem vii.

Supposing what is above demonstrated, I say, that if the tangents of the angles of the sector of a circle, and
of an hyperbola, be taken proportional to the velocities, the radius being of a fit magnitude, all the time of
the ascent to the highest place will be as the sector of the circle, and all the time of descending from the
highest place as the sector of the hyperbola.

To the right line AC, which expresses the force of gravity, let AD
b e drawn perpendicular and equal. From the centre D with the ;z
semi-diameter AD describe as well the quadrant AtE of a circle, as
the rectangular hyperbola AVZ, whose axis is AK, principal vertex - 1\:&&3
A, and asymptote DC. Let Dp, DP be drawn; and the circular sector T '

AtD will be as all the time of the ascent to the highest place; and N \ - A
LXK A

the hyperbolic sector ATD as all the time of descent from the
highest place; if so be that the tangents Ap, AP of those sectors be
as the velocities.

Case 1. Draw Duq cutting off the moments or least particles tDv . r

and gDp, described in the same time, of the sector ADt and of the

triangle ADp. Since those particles (because of the common angle

3 gDp x tD2
pD2

D) are in a duplicate ratio of the sides, the particle tDv will be a , that is (because tD is given), as

%. But pD2 is AD2 + Ap?, that is, AD2 + AD x Ak, or AD x Ck; and gDp is V2AD x pq. Therefore tDv, the

particle of the sector, is as %; that is, as the least decrement pq of the velocity directly, and the force Ck

which diminishes the velocity, inversely; and therefore as the particle of time answering to the decrement of
the velocity. And, by composition, the sum of all the particles tDv in the sector ADt will be as the sum of the
particles of time answering to each of the lost particles pqg of the decreasing velocity Ap, till that velocity,
being diminished into nothing, vanishes; that is, the whole sector ADt is as the whole time of ascent to the
highest place. Q.E.D.

Case 2. Draw DQV cutting off the least particles TDV and PDQ of the sector DAV, and of the triangle DAQ;
and these particles will be to each other as DT2 to DP2, that is (if TX and AP are parallel), as DX2 to DA2 or
TX2 to AP2; and, by division, as DX2 — TX2 to DA2 — AP2 . But, from the nature of the hyperbola, DX2 — TX2
is AD2; and, by the supposition, AP2 is AD x AK. Therefore the particles are to each other as AD2 to AD2 -

AD x AK; that is, as AD to AD — AK or AC to CK: and therefore the particle TDV of the sector is 7PD%I§ AC;

and therefore (because AC and AD are given) as Ié% that is, as the increment of the velocity directly, and as

the force generating the increment inversely; and therefore as the particle of the time answering to the

increment. And, by composition, the sum of the particles of time, in which all the particles PQ of the velocity
AP are generated, will be as the sum of the particles of the sector ATD; that is, the whole time will be as the
whole sector. Q.E.D.

Cor. 1. Hence if AB be equal to a fourth part of AC, the space which a body will describe by falling in any
time will be to the space which the body could describe, by moving uniformly on in the same time with its
greatest velocity AC, as the area ABNK, which expresses the space described in falling to the area ATD, which
expresses the time. For since AC is to AP as AP to AK, then (by Cor. 1, Lem. II, of this Book) LK is to PQ as
2AK to AP, that is, as 2AP to AC, and thence LK is to ¥2PQ as AP to 4AG or AB; and KN is to AC or AD as
AB to CK; and therefore, ex aequo, LKNO to DPQ as AP to CK. But DPQ was to DTV as CK to AC. Therefore,
ex aequo, LKNO is to DTV as AP to AC; that is, as the velocity of the falling body to the greatest velocity
which the body by falling can acquire. Since, therefore, the moments LKNO and DTV of the areas ABNK and
ATD are as the velocities, all the parts of those areas generated in the same time will be as the spaces
described in the same time; and therefore the whole areas ABNK and ADT, generated from the beginning,
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m the beginning of the descent. Q.E.D.

3/ Cor. 2. The same is true also of the space described in the ascent.
\ That is to say, that all that space is to the space described in the
r b
T QL_I_’_. same time, with the uniform velocity AC, as the area ABuk is to the
N o] P sector ADt.
LK (A

Cor. 3. The velocity of the body, falling in the time ATD, is to the
velocity which it would acquire in the same time in a non-resisting
space, as the triangle APD to the hyperbolic sector ATD. For the
velocity in a non-resisting medium would be as the time ATD, and

- E

in a resisting medium is as AP, that is, as the triangle APD. And

- _ . those velocities, at the beginning of the descent, are equal among
themselves, as well as those areas ATD, APD.

Cor. 4. By the same argument, the velocity in the ascent is to the velocity with which the body in the same
time, in a non-resisting space, would lose all its motion of ascent, as the triangle ApD to the circular sector
AtD; or as the right line Ap to the arc At.

Cor. 5. Therefore the time in which a body, by falling in a resisting medium, would acquire the velocity AP,
is to the time in which it would acquire its greatest velocity AC, by falling in a non-resisting space, as the
sector ADT to the triangle ADC: and the time in which it would lose its velocity Ap, by ascending in a
resisting medium, is to the time in which it would lose the same velocity by ascending in a non-resisting
space, as the arc At if to its tangent Ap.

Cor. 6. Hence from the given time there is given the space described in the ascent or descent. For the
greatest velocity of a body descending in infinitum is given (by Corol. 2 and 3, Theor. VI, of this Book); and
thence the time is given in which a body would acquire that velocity by falling in a non-resisting space. And
taking the sector ADT or ADt to the triangle ADC in the ratio of the given time to the time just now found,
there will be given both the velocity AP or Ap, and the area ABNK or ABnk, which is to the sector ADT, or
ADt, as the space sought to the space which would, in the given time, be uniformly described with that
greatest velocity found just before.

Cor. 7. And by going backward, from the given space of ascent or descent ABnk or ABNK, there will be
given the time ADt or ADT.

Proposition x. Problem iii.

Suppose the uniform force of gravity to tend directly to the plane of the horizon, and the resistance to be as
the density of the medium and the square of the velocity conjunctly: it is proposed to find the density of the
medium in each place, which shall make the body move in any given curve line; the velocity of the body
and the resistance of the medium in each place.

T Let PQ, be a plane perpendicular to the plane of the scheme
. ™~ ~ itself; PFHQ a curve line meeting that plane in the points P and
Fr h&"‘“—‘é 'MT Q; G, H, I, K four places of the body going on in this curve from F

to Q; and GB, HC, ID, KE four parallel ordinates let fall from
i these points to the horizon, and standing on the horizontal line
. I PQ, at the points B, C, D, E; and let the distances BC, CD, DE, of
the ordinates be equal among themselves. From the points G and

| H let the right lines GL, HN, be drawn touching the curve in G

P A B CDE 6,' and H, and meeting the ordinates CH, DI, produced upwards, in
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L and N: and complete the parallelogram HCDM. And the times in which the body describes the arcs GH,
HI, will be in a subduplicate ratio of the altitudes LH, NI, which the bodies would describe in those times, by
falling from the tangents; and the velocities will be as the lengths described GH, HI directly, and the times

inversely. Let the times be expounded by T and ¢, and the velocities by G,II,{ and == HI ; and the decrement of the
velocity produced in the time ¢ will be expounded by GH _HI Ty decrement arises from the resistance

T t
which retards the body, and from the gravity which accelerates it. Gravity, in a falling body, which in its fall

describes the space NI, produces a velocity with which it would be able to describe twice that space in the

same time, as Galileo has demonstrated; that is, the velocity === 2NI : but if the body describes the arc HI, it

augments that arc only by the length HI - HN or MI})I(INI and therefore generates only the velocity 21:2 XHII\H
. Let this velocity be added to the beforementioned decrement, and we shall have the decrement of the

GH _HI o2MIXNI 1y orefore since, in the same time,

T t  txHI

the action of gravity generates, in a falling body, 2NI , the resistance will be to the gravity as
GH _ HI | 2MI x NI tx GH 2MI x NI
T T+ < HI or as T - HI + o to 2NI.

Now for the abscissas CB, CD, CE, put —o, o, 20. For the T -
ordinate CH put P; and for MI put any series Qo + Ro2 + So3 +, - [~ ~
&c. And all the terms of the series after the first, that is, Ro2 + F “&"“I’ M
So3 +, &c., will be NI; and the ordinates DI, EK, and BG will be P N
— Qo - Ro2 - S03 —, &c., P - 2Qo — 4R02 - 8503 —, &c., and P + H
Qo - Ro2 + So3 -, &c.,respectively. And by squaring the I
differences of the ordinates BG — CH and CH - DI, and to the
squares thence produced adding the squares of BC and CD ' |
themselves, you will have oo + QQoo — 2QRo3 +, &c., andoo + P A B CDE Q
QQoo + 2QRo3 +, &c., the squares of the arcs GH, HI; whose roots oV(1+QQ) - ﬁ% , and
ovV(1+QQ) + —QRoo are the arcs GH and HI. Moreover, if from the ordinate CH there be subducted half

V(1+QQ)
the sum of the ordinates BG and DI, and from the ordinate DI there be subducted half the sum of the

ordinates CH and EK, there will remain Roo and Roo + 3So03, the versed sines of the arcs GI and HK. And
these are proportional to the lineolae LH and NI, and therefore in the duplicate ratio of the infinitely small

times T andt: and thence the ratio% is vR +R3SO) orl“'i'{/2SO ; th’I(‘;H HI+2MII_I)I< NI by

substituting the values of L, GH, HI, MI and NI just found, becomes 3§§0 v(1+QQ). And since 2NI is 2Roo,

the resistance will be now to the gravity as 32% V(1+QQ), that is, as 3Sv/(1+qq) to 4RR.

And the velocity will be such, that a body going off therewith from any place H, in the direction of the

tangent HN, would describe, in vacuo, a parabola, whose diameter is HC, and its latus rectum L ﬁ or 1+QQ

And the resistance is as the density of the medium and the square of the velocity conjunctly; and therefore
the density of the medium is as the resistance directly, and the square of the velocity inversely; that is, as

38V(1+QQ) 4 1+QQ; - that i
4RR directly and R inversely; that is, as ———*>—— RV(1+ Q Q) Q.E.L
Cor. 1. If the tangent HN be produced both ways, so as to meet any ordinate AF in T E(’I?‘ will be equal to

V(1+QQ); and therefore in what has gone before may be put for v/(1+QQ). By this means the resistance will

be to the gravity as 3S x HT to 4RR x AC; the velocity will be as Alg}‘R’ and the density of the medium will be
SxAC
& RxOT
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Cor. 2. And hence, if the curve line PFHQ be defined by the relation between the base or abscissa AC and
the ordinate CH, as is usual, and the value of the ordinate be resolved into a converging series, the Problem
will be expeditiously solved by the first terms of the series; as in the following examples.

Example 1. Let the line PFHQ be a semi-circle described upon the diameter PQ, to find the density of the
medium that shall make a projectile move in that line.

Bisect the diameter PQ in A; and call AQ, n; AC, a; CH, e; and CD, o; then DI2 or AQ2 — AD2 = nn - aa -
2a0 - o0, oree - 2a0 - o00; and the root beingextracted by our method, will give

DI=e-820_00_4300_a03 _as303 _ = g Here putnn foree + aa, and DI will become
e 2e 2e3 2e3 2e5
_ 20 _1Nnoo _annos _ g

e 2e3 2e5

Such series I distinguish into successive terms after this manner: I call that the first term in which the
infinitely small quantity o is not found; the second, in which that quantity is of one dimension only; the
third, in which it arises to two dimensions; the fourth, in which it is of three; and so ad infinitum. And the
first term, which here is e, will always denote the length of the ordinate CH, standing at the beginning of the
indefinite quantity o. The second term, which here is %, will denote the difference between CH and DN; that
is, the lineola MN which is cut off by completing the parallelogram HCDM; and therefore always determines
the position of the tangent HN; as, in this case, by taking MN to HM as % to 0, or a to e. The third term,

nnoo

which here is 203 ° will represent thelineola IN, which lies between the tangent and the curve; and

therefore determines the angle of contact IHN, or the curvature which the curve line has in H. If that lineola
IN is of a finite magnitude, it will be expressed by the third T~
term, together with those that follow in infinitum. But if that - [~

lineola be diminished in infinitum, the terms following become F =

fit
R

in finitely less than the third term, and therefore may be
neglected. The fourth term determines the variation of the h
curvature; the fifth, the variation of the variation; and so on. ' I
Whence, by the way, appears no contemptible use of these

series in the solution of problems that depend upon tangents, ' |

and the curvature of curves. » A B CDE @

Now compare the series e — 0 — 100 _ annos
e 2e3 2e5

Q,Rand S, pute, @, 1 and a;rér;, and for v/(1 + QQ) put V(1 + 2_2) org : and the density of the medium will

e’ 2e3
come out as e that is (because n is given), as @ or AC that is, as that length of the tangent HT, which is

1e’ e CH
terminated at the semi-diameter AF standing perpendicularly on PQ: and the resistance will be to the gravity
as 3a to 2n, that is, as 3AC to the diameter PQ of the circle; and the velocity will be as v/(CH). Therefore if

the body goes from the place F, with a due velocity, in the direction of a line parallel to PQ, and the density of

— &c., with the series P — Qo — Roo — So3 — &c., and for P,

the medium in each of the places H is as the length of the tangent HT, and the resistance also in any place H
is to the force of gravity as 3AC to PQ, that body will describe the quadrant FHQ of a circle. Q.E.IL

But if the same body should go from the place P, in the direction of a line perpendicular to PQ, and should
begin to move in an arc of the semi circle PFQ, we must take AC or a on the contrary side of the centre A; and
therefore its sign must be changed, and we must put —a for +a. Then the density of the medium would come
out as —%. But nature does not admit of a negative density, that is, a density which accelerates the motion of
bodies; and therefore it cannot naturally come to pass that a body by ascending from P should describe the
quadrant PF of a circle. To produce such an effect, a body ought to be accelerated by an impelling medium,
and not impeded by a resisting one.
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Example 2. Let the line PFQ be a parabola, having its axis AF perpendicular to the horizon PQ, to find the
density of the medium, which will make a projectile move in that line.

From the nature of the parabola, the rectangle PDQ is equal to the rectangle under
the ordinate DI and some given right line; that is, if that right line be called b; PC, a;

PQ, c; CH, e; and CD, o; the rectangle a + o intoc — a — o or ac — aa — 2ao + co — oo,
-—aa_ c-—2a

=5 Sy O
c—2a : - 00
Q Now the second term 5 ° of this series is to be put for Qo, and the third term b for

is equal to the rectangle b into DI, and therefore DI is equal to 2

Roo. But since there are no more terms, the co-efficient S of the fourth term will vanish; and therefore the
quantity m, to which the density of the medium is proportional, will be nothing. Therefore, where

the medium is of no density, the projectile will move in a parabola; as Galileo hath heretofore demonstrated.
Q.E.L

Example 3. Let the line AGK be an hyperbola, having its asymptote NX perpendicular to the horizontal
plane AK, to find the density of the medium that will make a projectile move in that line.

Let MX be the other asymptote, meeting the ordinate DG produced in V;

pe and from the nature of the hyperbola, the rectangle of XV into VG will be
‘7\ x given. There is also given the ratio of DN to VX, and therefore the rectangle

. of DN into VG is given. Let that be bb: and, completing the parallelogram
DNXZ, let BN be called a; BD, o0; NX, c; and let the given ratio of VZ to ZX

A\ or DN be 9 Then DN will be equal to a - 0, VG equal to abbo VZ equal to

—x(a—o),andGDorNX_VZ_VGequaltoc——a+mo— @ . Let the

n
| bb

bb bb bb bb

term — be resolved into the converging series == + 220 T 2300 T 2403

\E &e., and GD will become equal to ¢ - a bb 90 bbg, _bb,, b—b03
n° aa’ a3 a4

BD K N &c. The second term 90 bbo of this series is to be used for Qo; the third
h bb

b_b02 with its sign changed for Ro2; and the fourt

s %® , with its sign changed also for So3, and their

coefﬁments m bb 25 and bb ; are to be put for Q, R, and S in the former rule. Which being done, the density
bb
a4 or p—
bb \/( y + MM _2mbb | bay V(aa + naa -
nn  naa a4

1

of the medium will come out as

ombb + b_4) , that is, if in VZ
n

1 m2
you take VY equal to VG, as X For aa and e
the resistance to gravity is found to be that of 3XY to 2YG; and the Velocity is that with which the body would

2n111bb b4, ve the squares of XZ and ZY. But the ratio of

describe a parabola, whose vertex is G, diameter DG, latus rectum Y2 Suppose, therefore, that the densities

VG
of the medium in each of the places G are reciprocally as the distances XY, and that the resistance in any

place G is to the gravity as 3XY to 2YG; and a body let go from the place A, with a due velocity, will describe
that hyperbola AGK. Q.E.L

Example 4. Suppose, indefinitely, the line AGK to be an hyperbola described with the centre X, and the
asymptotes MX, NX, so that, having constructed the rectangle XZDN, whose side ZD cuts the hyperbola in G
and its asymptote in V, VG may be reciprocally as any power DNn of the line ZX or DN, whose index is the
number n: to find the density of the medium in which a projected body will describe this curve.

For BN, BD, NX, put A, O, C, respectively, and let VZ be to XZ or DN as d to e, and VG be equal to ]%PIn;

then DN will be equal to A — O, VG = ﬁ ,VZ = % (A - 0), and GD or NX - VZ - VG equal to
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c-da+do___Dbb
€ €

(A-O)n” Y
Let the term __bb__ be resolved into an infinite series . z X
(A-O)n
bb . nbb nn + n n3 + 3nn + 2n
Aot AnsiX xO0 + 2An +2xbb02+Txbe3&c Iv
And GD will be equal to

~dy ,bb,d~_ nbb +1nn + n + 13 + 3nn + 2n
C EA+H+EO AnHO An+2bb02 GAn+s bb0s3, &c.

The second term Q 0- Ll)b O of this series is to be used for Qo, the

third rln+nbb Oz for Roo, the fourth %ﬁbhm for So3. And thence the density of the medium

WJrQQy in any place G, will be

n+2
3\/(A2 + ddA2 2d2bbA+ IXI:::‘ )5

and therefore if in VZ you take VY equal ton x VG, that density is reciprocally as XY. For A2 and

%A _2dnbby , nnb4 .o 4,0 squares of XZ and ZY. But the resistance in the same place G is to the force of

eAn A2n
gravity as 3S x XKY to 4RR, that is, as XY to % VG. And the velocity there is the same wherewith the
projected body would move in a parabola, whose vertex is G, diameter GD, and latus rectum % or
2XY2
(nn +n) x VG’ QUL
Scholium.
7 In the same manner that the density of the medium comes out
) . ~ to be as SXAC , in Cor. 1, if the resistance is put as any power Vn
P ok RxHT
| BRI of the velocity V, the density of the medium will come out to be as
ACy, _,
| S x (89
I And therefore if a curve can be found, such that the ratio of
[ " R4 e ( )n 1, or of S_n to (1+QQ)n-1 may be given; the
P A B CDLEL (3, body, in an unlform medium, whose resistance is as the power Vn

of the velocity V, will move in this curve. But let us return to more simple curves.

Because there can be no motion in a parabola except in a non-resisting medium, but in the hyperbolas
here described it is produced by a perpetual resistance; it is evident that the line which a projectile describes
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in an uniformly resisting medium approaches nearer to these

hyperbolas than to a parabola. That line is certainly of the hyperbolic p o
kind, but about the vertex it is more distant from the asymptotes, and in z x
the parts remote from the vertex draws nearer to them than these p

hyperbolas here described. The difference, however, is not so great
between the oneand the other but that these latter may be v
commodiously enough used in practice instead of the former. And

perhaps these may prove more useful than an hyperbola that is more
accurate, and at the same time more compounded. They may be made
use of, then, in this manner.

Complete the parallelogram XYGT, and the right line GT will touch
the hyperbola in G, and therefore the density of the medium in G is reciprocally as the tangent GT, and the

velocity there as vV (GT2), and the resistance is to the force of gravity as GT to AN AT o (A

Therefore if a body projected from the place A, in the direction of the
right line AH, describes the hyperbola AGK and AH produced meets
the asymptote NX in H, and AI drawn parallel to it meets the other
asymptote MX in I; the density of the medium in A will be reciprocally

as AH, and the velocity of the body as v ( ), and the resistance there

2nn + 2n

to the force of gravity as AH to x AI. Hence the following

rules are deduced.

Rule 1. If the density of the medium at A, and the velocity with which '
the body is projected remain the same, and the angle NAH be changed,

the lengths AH, AI, HX will remain. Therefore if those lengths, in any one case, are found, the hyperbola
may afterwards be easily determined from any given angle NAH.

Rule 2. If the angle NAH, and the density of the medium at A, re main the same, and the velocity with
which the body is projected be changed, the length AH will continue the same; and AI will be changed in a
duplicate ratio of the velocity reciprocally.

Rule 3. If the angle NAH, the velocity of the body at A, and the accelerative gravity remain the same, and
the proportion of the resistance at A to the motive gravity be augmented in any ratio; the proportion of AH
to Al will be augmented in the same ratio, the latus rectum of the abovementioned parabola remaining the

same, and also the length proportlonal to it; and therefore AH will be diminished in the same ratio, and

AT will be diminished in the duplicate of that ratio. But the proportion of the resistance to the weight is
augmented, when either the specific gravity is made less, the magnitude remaining equal, or when the
density of the medium is made greater, or when, by diminishing the magnitude, the resistance becomes
diminished in a less ratio than the weight.

Rule 4. Because the density of the medium is greater near the vertex of the hyperbola than it is in the place
A, that a mean density may be preserved, the ratio of the least of the tangents GT to the tangent AH ought to
be found, and the density in A augmented in a ratio a little greater than that of half the sum of those tangents
to the least of the tangents GT.

Rule 5. If the lengths AH, Al are given, and the figure AGK is to be described, produce HN to X, so that HX
may beto AI asn + 1 to 1; and with the centre X, and the asymptotes MX, NX, describe an hyperbola
through the point A, such that AI may be to any of the lines VG as XVn to XIn.

Rule 6. By how much the greater the number n is, so much the more accurate are these hyperbolas in the
ascent of the body from A, and less accurate in its descent to K; and the contrary. The conic hyperbola keeps
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a mean ratio between these, and is more simple than the rest. Therefore if the hyperbola be of this kind, and
you are to find the point K, where the projected body falls upon any right line AN passing through the point
A, let AN produced meet the asymptotes MX, NX in M and N, and take NK equal to AM.

Rule 7. And hence appears an expeditious method of determining this hyperbola from the phenomena. Let
two similar and equal bodies be projected with the same velocity, in different angles HAK, hAk, and let them
fall upon the plane of the horizon in K and k; and note the proportion of AK to Ak. Let it be as d to e. Then
erecting a perpendicular Al of any length, assume any how the length AH or Ah, and thence graphically, or
by scale and compass, collect the lengths AK, Ak (by Rule 6). If the ratio of AK to Ak be the same with that of
d to e, the length of AH was rightly assumed. If not, take on the indefinite right line SM, the length SM equal

<
&

to the assumed AH; and erect a perpendicular MN equal to the difference %2( - % of the ratios drawn into any

given right line. By the like method, from several assumed lengths AH, you may find several points N; and
draw through them all a regular curve NNXN, cutting the right line SMMM in X. Lastly, assume AH equal to
the abscissa SX, and thence find again the length AK; and the lengths, which are to the assumed length Al,
and this last AH, as the length AK known by experiment, to the length AK last found, will be the true lengths
AT and AH, which were to be found. But these being given, there will be given also the resisting force of the
medium in the place A, it being to the force of gravity as AH to 4/,Al. Let the density of the medium be

increased by Rule 4, and if the resisting force just found be increased in the same ratio, it will become still
more accurate.

Rule 8. The lengths AH, HX being found; let there be now required the position of the line AH, according
to which a projectile thrown with that given velocity shall fall upon any point K. At the joints A and K, erect
the lines AC, KF perpendicular to the horizon; whereof let AC be drawn downwards, and be equal to AI or
1o,HX. With the asymptotes AK, KF, describe an hyperbola, whose conjugate shall pass through the point C;
and from the centre A, with the interval AH, describe a circle cutting that hyperbola in the point H; then the
projectile thrown in the direction of the right line AH will fall upon the point K. Q.E.I. For the point H,
because of the given length AH, must be somewhere in the circumference of the described circle. Draw CH
meeting AK and KF in E and F; and because CH, MX are parallel, and AC, Al equal, AE will be equal to AM,
and therefore also equal to KN. But CE is to AE as FH to KN, and therefore CE and FH are equal. Therefore
the point H falls upon the hyperbolic curve described with the asymptotes AK, KF whose conjugate passes

intersection of this hyperbolic curve and the circumference of the
described circle. Q.E.D. It is to be observed that this operation is the
same, whether the rightline AKN be parallel to the horizon, or

k through the point C; and is therefore found in the common

- inclined thereto in any angle; and that from two intersections H, h,
there arise two angles NAH, NAh; and that in mechanical practice it
is sufficient once to describe a circle, then to apply a ruler CH, of an
indeterminate length, so to the point C, that its part FH, intercepted
between the circle and the right line FK, may be equal to its part CE

placed between the point C and the right line AK
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What has been said of hyperbolas may be easily applied to parabolas. For if a
parabola be represented by XAGK, touched by a right line XV in the vertex X, and
the ordinates IA, VG be as any powers XIn, XVn, of the abscissas XI, XV; draw XT,
GT, AH, whereof let XT be parallel to VG, and let GT, AH touch the parabola in G
and A: and a body projected from any place A, in the direction of the right line AH,
with a due velocity, will describe this parabola, if the density of the medium in each
of the places G be reciprocally as the tangent GT. In that case the velocity in G will
be the same as would cause a body, moving in a nonresisting space, to describe a
conic parabola, having G for its vertex, VG produced downwards for its diameter,

(4
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The Mathematical Principles of Natural Philosophy

by Isaac Newton

Book 2.3
SECTION 111.

Of the motions of bodies which are resisted partly in the ratio of the velocities, and partly in the duplicate of the same
ratio.

Proposition xi. Theorem viii.

If a body be resisted partly in the ratio and partly in the duplicate ratio of its velocity, and moves in a
similar medium by its innate force only; and the times be taken in arithmetical progression; then
quantities reciprocally proportional to the velocities, increased by a certain given quantity, will be in
geometrical progression.

With the centre C, and the rectangular asymptotes CADd and CH, describe an
hyperbola BEe, and let AB, DE, de, be parallel to the asymptote CH. In the
asymptote CD let A, G be given points; and if the time be expounded by the
hyperbolic area ABED uniformly increasing, I say, that the velocity may be -
expressed by the length DF, whose reciprocal GD, together with the given line CG,
compose the length CD increasing in a geometrical progression.

For let the areola DEed be the least given increment of the time, and Dd will be

reciprocally as DE, and therefore dlrectly as CD. Therefore the decrement of -1~ G

D’
: CD . CG+GD 1 CG
which (by Lem. II. Book II) is =~ GD , will be also as GD: "~ GDz , that is, as Gb * GD2 . Therefore the time
ABED uniformly increasing by the addition of the given particles EDde, it follows that —— decreases in the

GD
same ratio with the velocity. For the decrement of the velocity is as the resistance, that is (by the

supposition), as the sum of two quantities, whereof one is as the velocity, and the other as the square of the

. 1 oy . L 1
velocity; and the decrement of GD is as the sum of the quantities GD and -C& GD , whereof the first is GD itself,
and the last % is as @ : therefore @ is as the velocity, the decrements of both being analogous. And if

the quantity GD reciprocally proportional to ==, be augmented by the given quantity CG; the sum CD, the

GD’
time ABED uniformly increasing, will increase in a geometrical progression. Q.E.D.

Cor. 1. Therefore, if, having the points A and G given, the time be expounded by the hyperbolic area ABED,
the velocity may be expounded by the reciprocal of GD.

Cor. 2. And by taking GA to GD as the reciprocal of the velocity at the beginning to the reciprocal of the

velocity at the end of any time ABED, the point G will be found. And that point being found the velocity may
be found from any other time given.

Proposition xii. Theorem ix.
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The same things being supposed, I say, that if the spaces described are taken in arithmetical progression,
the velocities augmented by a certain given quantity will be in geometrical progression.

In the asymptote CD let there be given the point R, and, erecting the
H

_ \B perpendicular RS meeting the hyperbola in S, let the space described be
’ ; expounded by the hyperbolic area RSED; and the velocity will be as the
I\\\ E length GD, which, together with the given line CG, composes a length CD
TRE . § decreasing in a geometrical progression, while the space RSED increases

.' ’ : in an arithmetical progression.

-

ot !
C ca Da R For, because the increment EDde of the space is given, the lineola Dd,

which is the decrement of GD, will be reciprocally as ED, and therefore directly as CD; that is, as the sum of
the same GD and the given length CG. But the decrement of the velocity, in a time reciprocally proportional
thereto, in which the given particle of space DdeE is described, is as the resistance and the time conjunctly,
that is, directly as the sum of two quantities, whereof one is as the velocity, the other as the square of the
velocity, and inversely as the velocity; and therefore directly as the sum of two quantities, one of which is
given, the other is as the velocity. Therefore the decrement both of the velocity and the line GD is as a given
quantity and a decreasing quantity conjunctly; and, because the decrements are analogous, the decreasing
quantities will always be analogous; viz., the velocity, and the line GD. Q.E.D.

Cor. 1. If the velocity be expounded by the length GD, the space described will be as the hyperbolic area
DESR.

Cor. 2. And if the point R be assumed any how, the point G will be found, by taking GR to GD as the
velocity at the beginning to the velocity after any space RSED is described. The point G being given, the space
is given from the given velocity: and the contrary.

Cor. 3. Whence since (by Prop. XI) the velocity is given from the given time, and (by this Prop.) the space
is given from the given velocity; the space will be given from the given time: and the contrary.

Proposition xiii. Theorem X.

Supposing that a body attracted downwards by an uniform gravity ascends or descends in a right line;
and that the same is resisted partly in the ratio of its velocity, and partly in the duplicate ratio thereof: I
say, that, if right lines parallel to the diameters of a circle and an hyperbola, be drawn through the ends of
the conjugate diameters, and the velocities be as some segments of those parallels drawn from a given
point, the times will be as the sectors of the areas cut off by right lines drawn from the centre to the ends of
the segments; and the contrary.

Case 1. Suppose first that the body is ascending, and from the centre D, with any
semi-diameter DB, describe a quadrant BETF of a circle, and through the end B of g
the semi-diameter DB draw the indefinite line BAP, parallel to the semi-diameter DF.

In that line let there be given the point A, and take the segment AP proportional to

the velocity. And since one part of the resistance is as the velocity, and another part
as the square of the velocity, let the whole resistance be as AP2 + 2BAP. Join DA, DP,
cutting the circle in E and T, and let the gravity be expounded by DA2, so that the
gravity shall be to the resistance in P as DA2 to AP2 + 2BAP; and the time of the vy, T
whole ascent will be as the sector EDT of the circle.

For draw DVQ, cutting off the moment PQ of the velocity AP, and the moment DTV of the sector DET
answering to a given moment of time; and that decrement PQ of the velocity will be as the sum of the forces
of gravity DA2 and of resistance AP2 + 2BAP, that is (by Prop. XII Book II, Elem.), as DP2. Then the area
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DPQ, which is proportional to PQ, is as DP2, and the area DTV, which is to the area DPQ as DT2 to DP2, is as
the given quantity DT2. Therefore the area EDT decreases uniformly according to the rate of the future time,
by subduction of given particles DTV, and is therefore proportional to the time of the whole ascent. Q.E.D.

Case 2. If the velocity in the ascent of the body be expounded by
the length AP as before, and the resistance be made as AP2 + 2BAP,
and if the force of gravity be less than can be expressed by DA2; take
BD of such alength, that AB2 — BD2 maybe proportional to the
gravity, and let DF be perpendicular and equal to DB, and through
the vertex F describe the hyperbola FTVE, whose conjugate semi-
diameters are DB and DF, and which cuts DA in E, and DP, DQ in T
and V; and the time of the whole ascent will be as the hyperbolic
sector TDE.

For the decrement PQ of the velocity, produced in a given particle of time, is as the sum of the resistance
AP2 + 2BAP and of the gravity AB2 — BD?2, that is, as BP2 — BD2. But the area DTV is to the area DPQ as DT2
to DP2; and, therefore, if GT be drawn perpendicular to DF, as GT2 or GD2 - DF2 to BD2, and as GD2 to
BP2, and, by division, as DF2 to BP2 — BD2. Therefore since the area DPQ is as PQ, that is, as BP2 — BD2, the
area DTV will be as the given quantity DF2. Therefore the area EDT decreases uniformly in each of the equal

particles of time, by the subduction of so many given particles DTV, and therefore is proportional to the
time. Q.E.D.

Case 3. Let AP be the velocity in the descent of the body, and AP2 + oBAP the
force of resistance, and BD2 — AB2 the force of gravity, the angle DBA being a right
one. And if with the centre D, and the principal vertex B, there be described a
rectangular hyperbola BETV cutting DA, DP, and DQ produced in E, T, and V; the
sector DET of this hyperbola will be as the whole time of descent.

For the increment PQ of the velocity, and the area DPQ proportional to it, is as
the excess of the gravity above the resistance, that is,as
BD2 — AB2 — 2BAXAP — AP2 or BD2 — BP2. And the area DTV is to the area DPQ as
DT2 to DP2; and therefore as GT2 or GD2 — BD2 to BP2, and as GD2 to BD2, and,
by division, as BD2 to BD2 — BP2. Therefore since the area DPQ is as BD2 — BP2, the area DTV will be as the
given quantity BD2. Therefore the area EDT increases uniformly in the several equal particles of time by the

addition of as many given particles DTV, and therefore is proportional to the time of the descent. Q.E.D.

Cor. If with the centre D and the semi-diameter DA there be drawn through the vertex A an arc At similar
to the arc ET, and similarly subtending the angle ADT, the velocity AP will be to the velocity which the body
in the time EDT, in a non-resisting space, can lose in its ascent, or acquire in its descent, as the area of the
triangle DAP to the area of the sector DAt; and therefore is given from the time given. For the velocity in a
non-resisting medium is proportional to the time, and therefore to this sector; in a resisting medium, it is as
the triangle; and in both mediums, where it is least, it approaches to the ratio of equality, as the sector and
triangle do.

Scholium

One may demonstrate also that case in the ascent of the body, where the force of gravity is less than can be
expressed by DA2 or AB2 + BD2, and greater than can be expressed by AB2 — DB2, and must be expressed
by AB2. But I hasten to other things.
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Proposition xiv. Theorem xi.

The same things being supposed, I say, that the space described in the ascent or descent is as the difference
of the area by which the time is expressed, and of some other area which is augmented or diminished in an
arithmetical progression; if the forces compounded of the resistance and the gravity be taken, in a
geometrical progression.

Take AC (in these three figures) proportional to the gravity, and AK to the resistance; but take them on the
same side of the point A, if the body is descending, otherwise on the contrary. Erect Ab, which make to DB as

DB2 to 4BAC: and to the rectangular asymptotes CK, H, describe the hyperbola bN; and, erecting KN
perpendicular to CK, the area ADNK will be augmented or diminished in an arithmetical progression, while
the forces CK are taken in a geometrical progression. I say, therefore, that the distance of the body from its
greatest altitude is as the excess of the area AbDNK above the area DET.

For since AK is as the resistance, that is, as AP2 x 2BAP; assume any given quantity Z, and put AK equal to
M; then (by Lem. II of this Book) the moment KL of AK will be equal to 2APQ + %BA xPQ op 2BZP Q,

Z
. 2BPQ x LO BPQ x BD3
and the moment KLON of the area AbNK will be equal to T O CKx AB

Case 1. Now if the body ascends, and the gravity be as AB2 + BD2, BET being a circle, the line AC, which is

proportional to the gravity, will be w, and DP2 or AP2 + 2BAP + AB2 + BD2willbe AKxZ + ACx Z

or CK x Z; and therefore the area DTV will be to the area DPQ as DT2 or DB2 to CK x Z.

Case 2. If the body ascends, and the gravity be as AB2 — BD2, the line AC will be w, and DT2 will

be to DP2 as DF2 or DB2 to BP2 — BD2 or AP2 + 2BAP + AB2 — BD2, thatis, to AKxZ + ACxZ or CKx Z.
And therefore the area DTV will be to the area DPQ as DB2 to CK x Z.

Case 3. And by the same reasoning, if the body descends, and therefore the gravity is as BD2 - AB2, and

the line AC becomes equal to w; the area DTV will be to the area DPQ, as DB2 to CK x Z: as above.

Since, therefore, these areas are always in this ratio, if for the area DTV, by which the moment of the time,
always equal to itself, is expressed, there be put any determinate rectangle, as BD x m, the area DPQ, that is,
14BD x PQ, will be to BD x m as CK x Z to BD2. And thence PQ x BD3 becomes equal to 2BD x m x CK x Z,

163/296



and the moment KLON of the area AbNK, found before, becomes W From the area DET subduct

BD xm
AB

that is, the moment of the difference of the areas, is equal to

BDxm
AB

ascent or descent. And therefore the difference of the areas, and that space, increasing or decreasing by

its moment DTV or BD x m, and there will remain APX . Therefore the difference of the moments,

AP xBD xm.
AB ’

) as the velocity AP; that is, as the moment of the space which the body describes in its

and therefore (because of the

given quantity

proportional moments, and beginning together or vanishing together, are proportional. Q.E.D.

Cor. If the length, which arises by applying the area DET to the line BD, be called M; and another length V
be taken in that ratio to the length M, which the line DA has to the line DE; the space which a body, in a
resisting medium, describes in its whole ascent or descent, will be to the space which a body, in a non-

resisting medium, falling from rest, can describe in the same time, as the difference of the aforesaid areas to

BD x V2,
AB ’

ratio of the time, or as V2; and, because BD and AB are given, as
DA2 x BD x M2

and therefore is given from the time given. For the space in a non-resisting medium is in a duplicate

BD x V2
AB

and the moment of M is m; and therefore the moment ot this area is

. This area is equal to the area

DA2xBD x2M xm But
DE2 x AB DE2 x AB )

this moment is to the moment of the difference of the aforesaid areas DET and AbNK, viz., to ABxBDxm

AB b
as w to /2BD x AP, or as % into DET to DAP; and, therefore, when the areas DET and DAP are

least, in the ratio of equality. Therefore the area BDA)EV2 and the difference of the areas DET and AbNK,

when all these areas are least, have equal moments; and are therefore equal. Therefore since the velocities,

and therefore also the spaces in both mediums described together, in the beginning of the descent, or the end

of the ascent, approach to equality, and therefore are then one to another as the area BDA%VZ, and the
difference of the areas DET and AbNK; and moreover since the space, in a non-resisting medium, is

BD x V2
AB

DET and AbNK; it necessarily follows, that the spaces, in both mediums, described in any equal times, are

one to another as that area BDA%VZ, and the difference of the areas DET and ADNK. Q.E.D.

perpetually as , and the space, in a resisting medium, is perpetually as the difference of the areas

164/296



Scholium.

The resistance of spherical bodies in fluids arises partly from the tenacity, partly from the attrition, and
partly from the density of the medium. And that part of the resistance which arises from the density of the
fluid is, as I said, in a duplicate ratio of the velocity; the other part, which arises from the tenacity of the fluid,
is uniform, or as the moment of the time; and, therefore, we might now proceed to the motion of bodies,
which are resisted partly by an uniform force, or in the ratio of the moments of the time, and partly in the
duplicate ratio of the velocity. But it is sufficient to have cleared the way to this speculation in Prop. VIII and
IX foregoing, and their Corollaries. For in those Propositions, instead of the uniform resistance made to an
ascending body arising from its gravity, one may substitute the uniform resistance which arises from the
tenacity of the medium, when the body moves by its vis insita alone; and when the body ascends in a right
line, add this uniform resistance to the force of gravity, and subduct it when the body descends in a right
line. One might also go on to the motion of bodies which are resisted in part uniformly, in part in the ratio of
the velocity, and in part in the duplicate ratio of the same velocity. And I have opened a way to this in Prop.
XIIT and XIV foregoing, in which the uniform resistance arising from the tenacity of the medium may be
substituted for the force of gravity, or be compounded with it as before. But I hasten to other things.

(4

165/296



The Mathematical Principles of Natural Philosophy

by Isaac Newton

Book 2.4
SECTION 1V.

Of the circular motion of bodies in resisting mediums.

Lemma iii.

Let PQR be a spiral cutting all the radii SP, SQ, SR, &c., in equal angles. Draw the right line PT touching
the spiral in any point P, and cutting the radius SQ In T; draw PO, QO perpendicular to the spiral, and
meeting in O, and join SO. I say, that if the points P and Q approach and coincide, the angle PSO will
become a right angle, and the ultimate ratio of the rectangle TQ x 2PS to PQ2 Will be the ratio of equality.

For from the right angles OPQ, OQR, subduct the equal angles SPQ,
SQR, and there will remain the equal angles OPS, OQS. Therefore a circle
which passes through the points OSP will pass also through the point Q.
Let the points P and Q coincide, and this circle will touch the spiral in the
place of coincidence PQ, and will therefore cut theright line OP
perpendicularly. Therefore OP will become a diameter of this circle, and
the angle OSP, being in a semi-circle, becomes a right one. Q.E.D.

Draw QD, SE perpendicular to OP, and the ultimate ratios of the lines
will be as follows: TQ to PD as TS or PS to PE, or 2PO to 2PS; and PD to PQ as PQ to 2PO; and, ex aequo
perturbate, to TQ to PQ as PQ to 2PS. Whence PQ2 becomes equal to TQ x 2PS. Q.E.D.

Proposition xv. Theorem xii.

If the density of a medium in each place thereof be reciprocally as the distance of the places from an
immovable centre, and the centripetal force be in the duplicate ratio of the density; I say, that a body may
revolve in a spiral which cuts all the radii drawn from that centre in a given angle.

Suppose every thing to be as in the foregoing Lemma, and produce SQ to V so that SV may be equal to SP.
In any time let a body, in a resisting medium, describe the least arc PQ, and in double the time the least arc
PR; and the decrements of those arcs arising from the resistance, or their differences from the arcs which
would be described in a non-resisting medium in the same times, will be to each other as the squares of the
times in which they are generated; therefore the decrement of the arc PQ is the fourth part of the decrement
of the arc PR. Whence also if the area QSr be taken equal to the area PSQ, the decrement of the arc PQ will
be equal to half the lineola Rr; and therefore the force of resistance and the centripetal force are to each
other as the lineola 2Rr and TQ which they generate in the same time. Because the centripetal force with
which the body is urged in P is reciprocally as SP2, and (by Lem. X, Book I) the lineola TQ, which is
generated by that force, is in a ratio compounded of the ratio of this force and the duplicate ratio of the time
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1. O T I | 1 1

in which the arc PQ is described (for in this case I neglect the resistance,
centripetal force), it follows that TQ x SP2, that is (by the last Lemma),
1/2PQ2 x SP, will be in a duplicate ratio of the time, and therefore the time

is as PQ xvSP; and the velocity of the body, with which the arc PQ is

PQ
PQ x VSP
ratio of SP reciprocally. And, by a like reasoning, the velocity with which

described in that time, as or \/ﬁ), that is, in the subduplicate

the arc QR is described, is in the subduplicate ratio of SQ reciprocally. Now
those arcs PQ and QR are as the describing velocities to each other; that is,
in the subduplicate ratio of SQ to SP, or as SQ to v/(SP x SQ); and, because
of the equal angles SPQ, SQr, and the equal areas PSQ, QSr, the arc PQ is
to the arc Qr as SQ to SP. Take the differences of the proportional ;
consequents, and the arc PQ will be to the arc Rr as SQ to SP — v/(SP x SQ), or %/2VQ. For the points P and Q
coinciding, the ultimate ratio of SP — v/(SP x SQ) to 12VQ is the ratio of equality. Because the decrement of
the arc PQ arising from the resistance, or its double Rr, is as the resistance and the square of the time

conjunctly, the resistance will be as PQzR_; Sp° But PQ was to Rr as SQ to %2VQ, and thence 7PQ5>1; Sp
LVQ 1508 . PN ..
becomes as PQ x SP x SQ’ Or as 55" “Spyr For the points P and Q coinciding, SP and SQ coincide also, and

the angle PVQ becomes a right one; and, because of the similar triangles PVQ, PSO, PQ becomes to /2VQ as

OP to Y20S. Therefore ﬁ is as the resistance, that is, in the ratio of the density of the medium in P
and the duplicate ratio of the velocity conjunctly. Subduct the duplicate ratio of the velocity, namely, the ratio
1 q q q q q 0OS
3p’ and there will remain the density of the medium in P, as OP x SP'
the given ratio of OS to OP, the density of the medium in P will be as S% Therefore in a medium whose

density is reciprocally as SP the distance from the centre, a body will revolve in this spiral. Q.E.D.

Let the spiral be given, and, because of

Cor. 1. The velocity in any place P, is always the same wherewith a body in a non-resisting medium with
the same centripetal force would revolve in a circle, at the same distance SP from the centre.

oS
oP’

And thence a spiral may be fitted to any density of the medium.

Cor. 2. The density of the medium, if the distance SP be given, is as

s 08
OP x SP*

but if that distance is not given,

a

Cor. 3. The force of the resistance in any place P is to the centripetal force in the same place as ¥20S to

/4VQ x PQ 1PQ2 . 1
o) and Sp , that is, as 2VQ and PQ,

or ¥20S and OP. The spiral therefore being given, there is given the proportion of the resistance to the

OP. For those forces are to each other as Y2Rr and TQ, or as

centripetal force; and, vice versa, from that proportion given the spiral is given.

Cor. 4. Therefore the body cannot revolve in this spiral, except where the force of resistance is less than
half the centripetal force. Let the resistance be made equal to half the centripetal force, and the spiral will
coincide with the right line PS, and in that right line the body will descend to the centre with a velocity that is
to the velocity, with which it was proved before, in the case of the parabola (Theor. X, Book I), the descent
would be made in a non-resisting medium, in the subduplicate ratio of unity to the number two. And the
times of the descent will be here reciprocally as the velocities, and therefore given.

Cor. 5. And because at equal distances from the centre the velocity is the same in the spiral PQR as it is in the
right line SP, and the length of the spiral is to the length of the right line PS in a given ratio, namely, in the
ratio of OP to OS; the time of the descent in the spiral will be to the time of the descent in the right line SP in
the same given ratio, and therefore given.

Cor. 6. If from the centre S, with any two given intervals, two circles are described; and these circles
remaining, the angle which the spiral makes with the radius PS be any how changed; the number of
revolutions which the body can complete in the space between the circumferences of those circles, going
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round in the spiral from one circumference to another, will be as %2, or as
the tangent of the angle which the spiral makes with the radius PS; and the
oP
oS’
same angle, or reciprocally as the density of the medium.

time of the same revolutions will be as that is, as the secant of the

Cor. 7. If a body, in a medium whose density
is reciprocally as the distances of places from
the centre, revolves in any curve AEB about
C that centre, and cuts the first radius AS in the
same angle in B as it did before in A, and that
with a velocity that shall be to its first velocity
in A reciprocally in a subduplicate ratio of the distances from the centre (that is,

E as AS toa mean proportional between AS and BS) that body will continue to
describe innumerable similar revolutions BFC, CGD, &c., and by its
intersections will distinguish the radius AS into parts AS, BS, CS, DS, &c., that are continually proportional.
But the times of the revolutions will be as the perimeters of the orbits AEB, BFC, CGD, &c., directly, and the
velocities at the beginnings A, B, C of those orbits inversely; that is as AS3/», BS3/2, CS3/-. And the whole time
in which the body will arrive at the centre, will be to the time of the first revolution as the sum of all the
continued proportionals ASs/», BS3/2, CS3/2, going on ad infinitum, to the first term ASs/»; that is, as the first
term ASs3/» to the difference of the two first ASs/> — BS3/s, or as %3AS to AB very nearly. Whence the whole
time may be easily found.

Cor. 8. From hence also may be deduced, near enough, the motions of bodies in mediums whose density
is either uniform, or observes any other assigned law. From the centre S, with intervals SA, SB, SC, &c.,
continually proportional, describe as many circles; and suppose the time of the revolutions between the
perimeters of any two of those circles, in the medium whereof we treated, to be to the time of the revolutions
between the same in the medium proposed as the mean density of the proposed medium between those
circles to the mean density of the medium whereof we treated, between the same circles, nearly: and that the
secant of the angle in which the spiral above determined, in the medium whereof we treated, cuts the radius
AS, is in the same ratio to the secant of the angle in which the new spiral, in the proposed medium, cuts the
same radius: and also that the number of all the revolutions between the same two circles is nearly as the
tangents of those angles. If this be done every where between every two circles, the motion will be continued
through all the circles. And by this means one may without difficulty conceive at what rate and in what time
bodies ought to revolve in any regular medium.

Cor. 9. And although these motions becoming eccentrical should be performed in spirals approaching to
an oval figure, yet, conceiving the several revolutions of those spirals to be at the same distances from each
other, and toapproach to the centre by the same degrees as the spiral above described, we may also
understand how the motions of bodies may be performed in spirals of that kind.

Proposition xvi. Theorem xiii.

If the density of the medium in each of the places be reciprocally as the distance of the places from the
immoveable centre, and the centripetal force be reciprocally as any power of the same distance, I say, that
the body may revolve in a spiral intersecting all the radii drawn from that centre in a given angle.

This is demonstrated in the same manner as the foregoing Proposition. For if the centripetal force in P be
reciprocally as any power SPn+1 of the distance SP whose index is n + 1; it will be collected, as above, that the

time in which the body describes any arc PQ, will be as PQ x PSv=n; and the resistance in P as ﬁ, or
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(1-12n)xVQ (1-12n)x0S :
a sm, and therefore a S 0P x SPuri ? that is (because
% is a given quantity), reciprocally as SPn+1. And therefore,

since the velocity is reciprocally as SP¥zn, the density in P will be
reciprocally as SP.

Cor. 1. The resistance is to the centripetal force as (1 — %2n)x OS to
OP.

Cor. 2. If the centripetal force be reciprocally as SP3, 1 — Y2n will be =
0; and therefore the resistance and density of the medium will be nothing,

as in Prop. IX, Book I.

Cor. 3. If the centripetal force be reciprocally as any power of the radius SP, whose index is greater than
the number 3, the affirmative resistance will be changed into a negative.

Scholium.

This Proposition and the former, which relate to mediums of unequal density, are to be understood of the
motion of bodies that are so small, that the greater density of the medium on one side of the body above that
on the other is not to be considered. I suppose also the resistance, caeteris paribus, to be proportional to its
density. Whence, in mediums whose force of resistance is not as the density, the density must be so much
augmented or diminished, that either the excess of the resistance may be taken away, or the defect supplied.

Proposition xvii. Problem iv.

To find the centripetal force and the resisting force of the medium, by which a body, the law of the velocity
being given, shall revolve in a given spiral.

Let that spiral be PQR. From the velocity, with which the body goes over the
very small arc PQ, the time will be given; and from the altitude TQ, which is as
the centripetal force, and the square of the time, that force will be given. Then
from the difference RSr of the areas PSQ and QSR described in equal particles

S of time, the retardation of the body will be given; and from the retardation will

be found the resisting force and density of the medium.

Proposition xviii. Problem V.

The law of centripetal force being given, to find the density of the medium in each of the places thereof, by
which a body may describe a given spiral.

From the centripetal force the velocity in each place must be found; then from the retardation of the
velocity the density of the medium is found, as in the foregoing Proposition.

But I have explained the method of managing these Problems in the tenth Proposition and second Lemma
of this Book; and will no longer detain the reader in these perplexed disquisitions. I shall now add some
things relating to the forces of progressive bodies, and to the density and resistance of those mediums in
which the motions hitherto treated of, and those akin to them, are performed.
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The Mathematical Principles of Natural Philosophy

by Isaac Newton

Book 2.5
SEcTION V.

Of the density and compression of fluids; and of hydrostatics.

The Definition of a Fluid.

A fluid is any body whose parts yield to any force impressed on it, by yielding, are easily moved among
themselves.

Proposition xix. Theorem xiv

All the parts of a homogeneous and unmoved fluid included in any unmoved vessel, and compressed on
every side (setting aside the consideration of condensation, gravity, and all centripetal forces), will be
equally pressed on every side, and remain in their places without any motion arising from that pressure.

Case 1. Let a fluid be included in the spherical vessel ABC, arid uniformly
compressed on every side: I say, that no part of it will be moved by that pressure.
For if any part, as D, be moved, all such parts at the same distance from the
centre on every side must necessarily be moved at the same time by a like
motion; because the pressure of them all is similar and equal; and all other
motion is excluded that does not arise from that pressure. But if these parts come
all of them nearer to the centre, the fluid must be condensed towards the centre,
contrary to the supposition. If they recede from it, the fluid must be condensed
towards the circumference; which is also contrary to the supposition. Neither can

they move in any one direction retaining their distance from the centre, because
for the same reason, they may move in a contrary direction; but the same part cannot be moved contrary
ways at the same time. Therefore no part of the fluid will be moved from its place. Q.E.D.

Case 2. I say now, that all the spherical parts of this fluid are equally pressed on every side. For let EF be a
spherical part of the fluid; if this be not pressed equally on every side, augment the lesser pressure till it be
pressed equally on every side; and its parts (by Case 1) will remain in their places. But before the increase of
the pressure, they would remain in their places (by Case 1); and by the addition of a new pressure they will
be moved, by the definition of a fluid, from those places. Now these two conclusions contradict each other.
Therefore it was false to say that the sphere EF was not pressed equally on every side. Q.E.D.

Case 3. I say besides, that different spherical parts have equal pressures. For the contiguous spherical parts
press each other mutually and equally in the point of contact (by Law III). But (by Case 2) they are pressed
on every side with the same force. Therefore any two spherical parts not contiguous, since an intermediate
spherical part can touch both, will be pressed with the same force. Q.E.D.
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Case 4. I say now, that all the parts of the fluid are every where pressed equally. For any two parts may be
touched by spherical parts in any points whatever; and there they will equally press those spherical parts (by
Case 3), and are reciprocally equally pressed by them (by Law III). Q.E.D.

Case 5. Since, therefore, any part GHI of the fluid is inclosed by the rest of the fluid as in a vessel, and is
equally pressed on every side; and also its parts equally press one another, and are at rest among
themselves; it is manifest that all the parts of any fluid as GHI, which is pressed equally on every side, do
press each other mutually and equally, and are at rest among themselves. Q.E.D.

Case 6. Therefore if that fluid be included in a vessel of a yielding substance, or that is not rigid, and be not
equally pressed on every side, the same will give way to a stronger pressure, by the Definition of fluidity.

Case 7. And therefore, in an inflexible or rigid vessel, a fluid will not sustain a stronger pressure on one
side than on the other, but will give way to it, and that in a moment of time; because the rigid side of the
vessel does not follow the yielding liquor. But the fluid, by thus yielding, will press against the opposite side,
and so the pressure will tend on every side to equality. And because the fluid, as soon as it endeavours to
recede from the part that is most pressed, is withstood by the resistance of the vessel on the opposite side,
the pressure will on every side be reduced to equality, in a moment of time, without any local motion: and
from thence the parts of the fluid (by Case 5) will press each other mutually and equally, and be at rest
among themselves. Q.E.D.

Cor. Whence neither will a motion of the parts of the fluid among themselves be changed by a pressure
communicated to the external superficies, except so far as either the figure of the superficies may be
somewhere altered, or that all the parts of the fluid, by pressing one another more in tensely or remissly,
may slide with more or less difficulty among them selves.

Proposition xx. Theorem xv.

If all the parts of a spherical fluid, homogeneous at equal distances from the centre, lying on a spherical
concentric bottom, gravitate towards the centre of the whole, the bottom will sustain the weight of a
cylinder, whose base is equal to the superficies of the bottom, and whose altitude is the same with that of
the incumbent fluid.

Let DHM be the superficies of the bottom, and AEI the upper superficies of the fluid. Let the fluid be
distinguished into concentric orbs of equal thickness, by the innumerable spherical superficies BFK, CGL:
and conceive the force of gravity to act only in the upper superficies of
every orb, and the actions to be equal on the equal parts of all the
superficies. Therefore the upper superficies AE is pressed by the single
force of its own gravity, by which all the parts of the upper orb, and the
second superficies BFK, will (by Prop. XIX), according to its measure, be

equally pressed. The second superficies BFK is pressed likewise by the ]
force of its own gravity, which, added to the former force, makes the £
pressure double. The third superficies GGL is, according to its measure, '
acted on by this pressure and the force of its own gravity besides, which
makes its pressure triple. And in like manner the fourth superficies

receives a quadruple pressure, the fifth superficies a quintuple, and so
on. Therefore the pressure acting on every superficies is not as the solid
quantity of the incumbent fluid, but as the number of the orbs reaching to the upper surface of the fluid; and
is equal to the gravity of the lowest orb multiplied by the number of orbs: that is, to the gravity of a solid
whose ultimate ratio to the cylinder above-mentioned (when the number of the orbs is increased and their
thickness diminished, ad infinitum, so that the action of gravity from the lowest superficies to the uppermost
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may become continued) is the ratio of equality. Therefore the lowest superficies sustains the weight of the
cylinder above determined. Q.E.D. And by a like reasoning the Proposition will be evident, where the
gravity of the fluid decreases in any assigned ratio of the distance from the centre, and also where the fluid is
more rare above and denser below. Q.E.D.

Cor. 1. Therefore the bottom is not pressed by the whole weight of the incumbent fluid, but only sustains
that part of it which is described in the Proposition; the rest of the weight being sustained archwise by the
spherical figure of the fluid.

Cor. 2. The quantity of the pressure is the same always at equal distances from the centre, whether the
superficies pressed be parallel to the horizon, or perpendicular, or oblique; or whether the fluid, continued
upwards from the compressed superficies, rises perpendicularly in a rectilinear direction, or creeps obliquely
through crooked cavities and canals, whether those passages be regular or irregular, wide or narrow. That
the pressure is not altered by any of these circumstances, may be collected by applying the demonstration of
this Theorem to the several cases of fluids.

Cor. 3. From the same demonstration it may also be collected (by Prop. XIX), that the parts of a heavy
fluid acquire no motion among themselves by the pressure of the incumbent weight, except that motion
which arises from condensation.

Cor. 4. And therefore if another body of the same specific gravity, incapable of condensation, be immersed
in this fluid, it will acquire no motion by the pressure of the incumbent weight: it will neither descend nor
ascend, nor change its figure. If it be spherical, it will remain so, notwithstanding the pressure; if it be
square, it will remain square; and that, whether it be soft or fluid; whether it swims freely in the fluid, or lies
at the bottom. For any internal part of a fluid is in the same state with the submersed body; and the case of
all submersed bodies that have the same magnitude, figure, and specific gravity, is alike. If a submersed
body, retaining its weight, should dissolve and put on the form of a fluid, this body, if before it would have
ascended, descended, or from any pressure assume a new figure, would now likewise ascend, descend, or
put on a new figure; and that, because its gravity and the other causes of its motion remain. But (by Case 5,
Prop. XIX) it would now be at rest, and retain its figure. Therefore also in the former case.

Cor. 5. Therefore a body that is specifically heavier than a fluid contiguous to it will sink; and that which is
specifically lighter will ascend, and attain so much motion and change of figure as that excess or defect of
gravity is able to produce. For that excess or defect is the same thing as an impulse, by which abody,
otherwise in equilibrio with the parts of the fluid, is acted on; and may be compared with the excess or defect
of a weight in one of the scales of a balance.

Cor. 6. Therefore bodies placed in fluids have a twofold gravity the one true and absolute, the other
apparent, vulgar, and comparative. Absolute gravity is the whole force with which the body tends
downwards; relative and vulgar gravity is the excess of gravity with which the body tends downwards more
than the ambient fluid. By the first kind of gravity the parts of all fluids and bodies gravitate in their proper
places; and therefore their weights taken together compose the weight of the whole. For the whole taken
together is heavy, as may be experienced in vessels full of liquor; and the weight of the whole is equal to the
weights of all the parts, and is therefore composed of them. By the other kind of gravity bodies do not
gravitate in their places; that is, compared with one another, they do not preponderate, but, hindering one
another's endeavours to descend, remain in their proper places, as if they were not heavy. Those things
which are in the air, and do not preponderate, are commonly looked on as not heavy. Those which do
preponderate are commonly reckoned heavy, in as much as they are not sustained by the weight of the air.
The common weights are nothing else but the excess of the true weights above the weight of the air. Hence
also, vulgarly, those things are called light which are less heavy, and, by yielding to the preponderating air,
mount upwards. But these are only comparatively light, and not truly so, because they descend in vacuo.
Thus, in water, bodies which, by their greater orless gravity, descend or ascend, are comparatively and
apparently heavy or light; and their comparative and apparent gravity or levity is the excess or defect by
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which their true gravity either exceeds the gravity of the water or is exceeded by it. But those things which
neither by preponderating descend, nor, by yielding to the preponderating fluid, ascend, although by their
true weight they do increase the weight of the whole, yet comparatively, and in the sense of the vulgar, they
do not gravitate in the water. For these cases are alike demonstrated.

Cor. 7. These things which have been demonstrated concerning gravity take place in any other centripetal
forces.

Cor. 8. Therefore if the medium in which any body moves be acted on either by its own gravity, or by any
other centripetal force, and the body be urged more powerfully by the same force; the difference of the forces
is that very motive force, which, in the foregoing Propositions, I have considered as a centripetal force. But if
the body be more lightly urged by that force, the difference of the forces becomes a centrifugal force, and is
to be considered as such.

Cor. 9. But since fluids by pressing the included bodies do not change their external figures, it appears also
(by Cor. Prop. XIX) that they will not change the situation of their internal parts in relation to one another;
and therefore if animals were immersed therein, and that all sensation did arise from the motion of their
parts, the fluid will neither hurt the immersed bodies, nor excite any sensation, unless so far as those bodies
may be condensed by the compression. And the case is the same of any system of bodies encompassed with a
compressing fluid. All the parts of the system will be agitated with the same motions as if they were placed in
a vacuum, and would only retain their comparative gravity; unless so far as the fluid may somewhat resist
their motions, or be requisite to conglutinate them by compression.

Proposition xxi. Theorem xvi.

Let the density of any fluid be proportional to the compression, and its parts be attracted downwards by a
centripetal force reciprocally proportional to the distances from the centre: I say, that, if those distances be
taken continually proportional, the densities of the fluid at the same distances will be also continually
proportional.

Let ATV denote the spherical bottom of the fluid, S the centre, SA, SB, SC, SD, SE, SF, &c., distances

continually proportional. Erectthe perpendiculars AH, BI, CK, DL, EM, FN, &c., which shall be as the

AH BI

densities of the medium in the places A, B, C, D, E, F; and the specific gravities in those places will be AS’ BS

, (é—lg, &ec., or, which is all one, as %, ]13?_(11’ g—g, &c. Suppose, first, these gravities to be uniformly continued
from A to B, from B to C, from C to D, &c., the decrements in the points B, C, D, &c.,

G}—o being taken by steps. And these gravities drawn into the altitudes AB, BC, CD, &c.,
F—N will give the pressures AH, BI, CK, &c., by which the bottom ATV is acted on (by
E—NM Theor. XV). Therefore the particle A sustains all the pressures AH, BI, CK, DL, &c.,

D __'I;c proceeding in infinitum; and the particle B sustains the pressures of all but the first
g—-—m AH; and the particle C all but the two first AH, BI; and so on: and therefore the

A density AH of the first particle A is to the density BI of the second particle B as the

sum of all AH + BI + CK + DL, in infinitum, to the sum of all BI + CK + DL, &c. And

S BI the density of the second particle B is to CK the density of the third C, as the sum

of all BI + CK + DL, &c., to the sum of all CK + DL, &c. Therefore these sums are
proportional to their differences AH, BI, CK, &c., and therefore continually
proportional (by Lem. 1 of this Book); and therefore the differences AH, BI, CK, &c.,
proportional to the sums, are also continually proportional. Wherefore since the densities in the places A, B,
C, &c., are as AH, BI, CK, &c., they will also be continually proportional. Proceed intermissively, and, ex
aequo, at the distances SA, SC, SE, continually proportional, the densities AH, CK, EM will be continually
proportional. And by the same reasoning, at any distances SA, SD, SG, continually proportional, the
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densities AH, DL, GO, will be continually proportional. Let now the points A, B, C, D, E, &c., coincide, so
that the progression of the specific gravities from the bottom A to the top of the fluid may be made continual;
and at any distances SA, SD, SG, continually proportional, the densities AH, DL, GO, being all along
continually proportional, will still remain continually proportional. Q.E.D.

Cor. Hence if the density of the fluid in two places, as A and E, be given, its density
in any other place Q may be collected. With the centre S, and the rectangular

Ql—HT
asymptotes SQ, SX, describe an hyperbola cutting the perpendiculars AH, EM, QT in
{7 M a, e, and q, as also the perpendiculars HX, MY, TZ, let fall upon the asymptote SX, in
t h, m, and t. Make the area YmtZ to the given area YmhX as the given area EeqQ to the

Al Q& g given area EeaA; and the line Zt produced will cut off the line QT proportional to the
%2~ density. For if the lines SA, SE, SQ are continually proportional, the areas EeqQ, EeaA

Z Y i will be equal, and thence the areas YmtZ, XhmY, proportional to them, will be also
equal; and the lines SX, SY, SZ, that is, AH, EM, QT continually proportional, as they

ought to be. And if the lines SA, SE, SQ, obtain any other order in the series of continued proportionals, the

L2

lines AH, EM, QT, because of the proportional hyperbolic areas, will obtain the same order in another series
of quantities continually proportional.

Proposition xxii. Theorem xvii.

Let the density of any fluid be proportional to the compression, and its parts be attracted downwards by a
gravitation reciprocally proportional to the squares of the distances from the centre: I say, that if the
distances be taken in harmonic progression, the densities of the fluid at those distances will be in a
geometrical progression.

Let S denote the centre, and SA, SB, SC, SD, SE, the distances
in geometrical progression. Erect the perpendiculars AH, BI,
CK, &c., which shall be as the densities of the fluid in the places

A, B, C, D, E, &c., and the specific gravities thereof in those \.c L
AH BI CK K-
SA2’ SB2’ SC2 r '
uniformly continued, the first from A to B, the second from B to \ .
C, the third from C to D, &c. And these drawn into the altitudes E%H L2 4
AB, BC, CD, DE, &c., or, which is the same thing, into the ¥

) i ‘ i ] zYyx v u /4
distances SA, SB, SC, &c., proportional to those altitudes, will

, &c. Suppose these gravities to be I

places will be as

pEa B =
i

give 1;—2, g—]lg, g—lé, &ec., the exponents of the pressures. Therefore since the densities are as the sums of those
pressures, the differences AH — BI, BI — CK, &c., of the densities will be as the differences of those sums ég’
g—]lg, g—lé, &c. With the centre S, and the asymptotes SA, Sx, describe any hyperbola, cutting the perpendiculars
AH, BI, CK, &c., ina, b, ¢, &c., and the perpendiculars Ht, In, Kw, let fall upon the asymptote Sx, in h, i, k;

AH BI
SA’ SB’
, &c., that is, as Aa, Bb, &c. For, by the nature of the hyperbola, SA is to AH

AHSféth is equal to Aa. And, by a like reasoning, BIS>]<3ui is equal to Bb, &c. But

Aa, Bb, Cc, &c., are continually proportional, and therefore proportional to their differences Aa — Bb, Bb —

and the differences of the densities tu, uw, &c., will be as
AHxth BIxui

SA ’ SB
or St as th to Ac, and therefore

&c. And the rectangles tu x th, uw x ui, &c.,

or tp, uq, &c., as

Cc, &c., therefore the rectangles tp, uq, &c., are proportional to those differences; as also the sums of the
rectangles tp + uq, or tp + ug + wr to the sums of the differences Aa — Cc or Aa — Dd. Suppose several of
these terms, and the sum of all the differences, as Aa — Ff, will be proportional to the sum of all the
rectangles, as zthn. Increase the number of terms, and diminish the distances of the points A, B, C, &c., in
infinitum, and those rectangles will become equal to the hyperbolic area zthn, and therefore the difference
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Aa - Ffis proportional to this area. Take now any distances, as SA, SD, SF, in harmonic progression, and the
differences Aa — Dd, Dd — Ff will be equal; and therefore the areas thlx, xluz, proportional to those
differences will be equal among themselves, and the densities St, Sx, Sz, that is, AH, DL, FN, continually
proportional. Q.E.D.

Cor. Hence if any two densities of the fluid, as AH and BI, be given, the area thiu, answering to their
difference tu, will be given; and thence the density FN will be found at any height SF, by taking the area thnz
to that given area thiu as the difference Aa — Ffto the difference Aa — Bb.

Scholium.

By a like reasoning it may be proved, that if the gravity of the particles of a fluid be diminished in a

triplicate ratio of the distances from the centre; and the reciprocals of the squares of the distances SA, SB,

SA3 SA3 SA3
SA2’ SB2’ SC2

be in a geometrical progression. And if the gravity be diminished in a quadruplicate ratio of the distances,

SA4 SA4 SA4 &e.
SA3’ SB3’ SC3’

the densities AH, BI, CK, &c., will be in geometrical progression. And so in infinitum. Again; if the gravity of

SC, &c., (namely, ) be taken in an arithmetical progression, the densities AH, BI, CK, &c., will

and the reciprocals of the cubes of the distances (as ,) be taken in arithmetical progression,

the particles of the fluid be the same at all distances, and the distances be in arithmetical progression, the
densities will be in a geometrical progression as Dr. Halley has found. If the gravity be as the distance, and
the squares of the distances be in arithmetical progression, the densities will be in geometrical progression.
And so in infinitum. These things will be so, when the density of the fluid condensed by compression is as the
force of compression; or, which is the same thing, when the space possessed by the fluid is reciprocally as
this force. Other laws of condensation may be supposed, as that the cube of the compressing force may be as
the biquadrate of the density; or the triplicate ratio of the force the same with the quadruplicate ratio of the
density: in which case, if the gravity he reciprocally as the square of the distance from the centre; the density
will be reciprocally as the cube of the distance. Suppose that the cube of the compressing force be as the
quadrato-cube of the density; and if the gravity be reciprocally as the square of the distance, the density will
be reciprocally in a sesquiplicate ratio of the distance. Suppose the compressing force to be in a duplicate
ratio of the density, and the gravity reciprocally in a duplicate ratio of the distance, and the density will be
reciprocally as the distance. To run over all the cases that might be offered would be tedious. But as to our
own air, this is certain from experiment, that its density is either accurately, or very nearly at least, as the
compressing force; and therefore the density of the air in the atmosphere of the earth is as the weight of the
whole incumbent air, that is, as the height of the mercury in the barometer.

Proposition xxiii. Theorem xviii.

If a fluid be composed of particles mutually flying each other, and the density be as the compression, the

centrifugal forces of the particles will be reciprocally proportional to the distances of their centres. And,

vice versa, particles flying each other, with forces that are reciprocally proportional to the distances of
their centres, compose an elastic fluid, whose density is as the compression.

Let the fluid be supposed to be included in a cubic space ACE, and then to be reduced by compression into
a lesser cubic space ace; and the distances of the particles retaining a like situation with respect to each other
in both the spaces, will be as the sides AB, ab of the cubes; and the densities of the mediums will be
reciprocally as the containing spaces AB3, ab3. In the plane side of the greater cube ABCD take the square
DP equal to the plane side db of the lesser cube: and, by the supposition, the pressure with which the square
DP urges the inclosed fluid will be to the pressure with which that square db urges the inclosed fluid as the
densities of the mediums are to each other, that is, as ab3 to AB3. But the pressure with which the square DB
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urges the included fluid is to the pressure with which the square DP urges the same fluid
the square DP, that is, as AB2 to ab2. Therefore, ex aequo, the pressure with which the

square DB urges the fluid is to the pressure with which the square db urges the fluid as 4 ' B
ab to AB. Let the planes FGH, fgh, be drawn through the middles of the two cubes, and ¥
divide the fluid into two parts. These parts will press each other mutually with the same

forces with which they are themselves pressed by the planes AC, ac, that is, in the Pﬂi
proportion of ab to AB: and therefore the centrifugal forces by which these pressures K i

are sustained are in the same ratio. The number of the particles being equal, and the D - C
situation alike, in both cubes, the forces which all the particles exert, according to the «

planes FGH, fgh, upon all, are as the forces which each exerts on each. Therefore the s "W_}L
forces which each exerts on each, according to the plane FGH in the greater cube, are to '
the forces which each exerts on each, according to the plane fgh in the lesser cube, as & c

ab to AB, that is, reciprocally as the distances of the particles from each other. Q.E.D.

And, vice versa, if the forces of the single particles are reciprocally as the distances, that is, reciprocally as
the sides of the cubes AB, ab; the sums of the forces will be in the same ratio, and the pressures of the sides
DB, db as the sums of the forces; and the pressure of the square DP to the pressure of the side DB as ab2 to
AB2 . And, ex aequo, the pressure of the square DP to the pressure of the side db as ab3 to AB3; that is, the
force of compression in the one to the force of compression in the other as the density in the former to the
density in the latter. Q.E.D.

Scholium.

By a like reasoning, if the centrifugal forces of the particles are reciprocally in the duplicate ratio of the
distances between the centres, the cubes of the compressing forces will be as the biquadrates of the densities.
If the centrifugal forces be reciprocally in the triplicate or quadruplicate ratio of the distances, the cubes of
the compressing forces will be as the quadratocubes, or cubo-cubes of the densities. And universally, if D be
put for the distance, and E for the density of the compressed fluid, and the centrifugal forces be reciprocally
as any power Dn of the distance, whose index is the number n, the compressing forces will be as the cube
roots of the power En+2, whose index is the number n + 2; and the contrary. All these things are to be
understood of particles whose centrifugal forces terminate in those particles that are next them, or are
diffused not much further. We have an example of this in magnetical bodies. Their attractive virtue is
terminated nearly in bodies of their own kind that are next them. The virtue of the magnet is contracted by
the interposition of an iron plate, and is almost terminated at it: for bodies further off are not attracted by
the magnet so much as by the iron plate. If in this manner particles repel others of their own kind that lie
next them, but do not exert their virtue on the more remote, particles of this kind will compose such fluids as
are treated of in this Proposition. If the virtue of any particle diffuse itself every way in infinitum, there will
be required a greater force to produce an equal condensation of a greater quantity of the fluid. But whether
elastic fluids do really consist of particles so repelling each other, is a physical question. We have here
demonstrated mathematically the property of fluids consisting of particles of this kind, that hence
philosophers may take occasion to discuss that question.

(4
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The Mathematical Principles of Natural Philosophy

by Isaac Newton

Book 2.6
SECTION VI.

Of the motion and resistance of funependulous bodies.

Proposition xxiv. Theorem xix.

The quantities of matter in_funependulous bodies, whose centres of oscillation are equally distant from the
centre of suspension, are in a ratio compounded of the ratio of the weights and the duplicate ratio of the
times of the oscillations in vacuo.

For the velocity which a given force can generate in a given matter in a given time is as the force and the
time directly, and the matter inversely. The greater the force or the time is, or the less the matter, the greater
velocity will be generated. This is manifest from the second Law of Motion. Now if pendulums are of the
same length, the motive forces in places equally distant from the perpendicular are asthe weights: and
therefore if two bodies by oscillating describe equal arcs, and those arcs are divided into equal parts; since
the times in which the bodies describe each of the correspondent parts of the arcs are as the times of the
whole oscillations, the velocities in the correspondent parts of the oscillations will be to each other as the
motive forces and the whole times of the oscillations directly, and the quantities of matter reciprocally: and
therefore the quantities of matter are as the forces and the times of the oscillations directly and the velocities
reciprocally. But the velocities reciprocally are as the times, and therefore the times directly and the
velocities reciprocally are as the squares of the times; and therefore the quantities of matter are as the motive
forces and the squares of the times, that is, as the weights and the squares of the times. Q.E.D.

Cor. 1. Therefore if the times are equal, the quantities of matter in each of the bodies are as the weights.
Cor. 2. If the weights are equal, the quantities of matter will be as the squares of the times.
Cor. 3. If the quantities of matter are equal, the weights will be reciprocally as the squares of the times.

Cor. 4. Whence since the squares of the times, caeteris paribus, are as the lengths of the pendulums,
therefore if both the times and quantities of matter are equal, the weights will be as the lengths of the
pendulums.

Cor. 5. And universally, the quantity of matter in the pendulous body is as the weight and the square of
the time directly, and the length of the pendulum inversely.

Cor. 6. But in a non-resisting medium, the quantity of matter in the pendulous body is as the
comparative weight and the square of the time directly, and the length of the pendulum inversely. For the
comparative weight is the motive force of the body in any heavy medium, as was shewn above; and therefore
does the same thing in such a non-resisting medium as the absolute weight does in a vacuum.
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Cor. 7. And hence appears a method both of comparing bodies one among another, as to the quantity of
matter in each; and of comparing the weights of the same body in different places, to know the variation of
its gravity. And by experiments made with the greatest accuracy, I have always found the quantity of matter
in bodies to be proportional to their weight.

Proposition xxv. Theorem xx.

Funependulous bodies that are, in any medium, resisted in the ratio of the moments of time, and
funependulous bodies that move in a non-resisting medium of the same specific gravity, perform their
oscillations in a cycloid in the same time, and describe proportional parts of arcs together.

Let AB be an arc of a cycloid, which a body D, by vibrating in a
non-resisting medium, shall describe in any time. Bisect that arc
inC, so that C may be the lowest point thereof; and the
accelerative force with which the body is urged in any place D, or
d or E, will be as the length of the arc CD, or Cd, or CE. Let that
force be expressed by that same arc; and since the resistance is
as the moment of the time, and therefore given, let it be
expressed by the given part CO of the cycloidal arc, and take the
arc Od in the same ratio to the arc CD that the arc OB has to the
arc CB: and the force with which the body in d is urged in a

resisting medium, being the excess of the force Cd above the resistance CO, will be expressed by the arc Od,
and will therefore be to the force with which the body D is urged in a non-resisting medium in the place D,
as the arc Od to the arc CD; and therefore also in the place B, as the arc OB to the arc CB. Therefore if two
bodies D, d go from the place Be and are urged by these forces; since the forces at the beginning are as the
arc CB and OB, the first velocities and arcs first described will be in the same ratio. Let those arcs be BD and
Bd, and the remaining arcs CD, Od, will be in the same ratio. Therefore the forces, being proportional to
those arcs CD, Od, will remain in the same ratio as at the beginning, and therefore the bodies will continue
describing together arcs in the same ratio. Therefore the forces and velocities and the remaining arcs CD,
0Od, will be always as the whole arcs CB, OB, and therefore those remaining arcs will be described together.
Therefore the two bodies D and d will arrive together at the places C and O; that which moves in the non-
resisting medium, at the place C, and the other, in the resisting medium, at the place O. Now since the
velocities in C and O are as the arcs CB, OB, the arcs which the bodies describe when they go farther will be
in the same ratio. Let those arcs be CE and Oe. The force with which the body D in a non-resisting medium
is retarded in E is as CE, and the force with which the body d in the resisting medium is retarded in e, is as
the sum of the force Ce and the resistance CO, that is, as Oe; and therefore the forces with which the bodies
are retarded are as the arcs CB, OB, proportional to the arcs CE, Oe; and therefore the velocities, retarded in
that given ratio, remain in the same given ratio. Therefore the velocities and the arcs described with those
velocities are always to each other in that given ratio of the arcs CB and OB; and therefore if the entire arcs
AB, aB are taken in the same ratio, the bodies D and d will describe those arcs together, and in the places A
and a will lose all their motion together. Therefore the whole oscillations are isochronal, or are performed in
equal times; and any parts of the arcs, as BD, Bd, or BE, Be, that are described together, are proportional to
the whole arcs BA, Ba. Q.E.D.

Cor. Therefore the swiftest motion in a resisting medium does not fall upon the lowest point C, but is found
in that point O, in which the whole arc described Ba is bisected. And the body, proceeding from thence to a,
is retarded at the same rate with which it was accelerated before in its descent from B to O.

Proposition xxvi. Theorem xxi.
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Funependulous bodies, that are resisted in the ratio of the velocity, have their oscillations in a cycloid
isochronal.

For if two bodies, equally distant from their centres of suspension, describe, in oscillating, unequal arcs,
and the velocities in the correspondent parts of the arcs be to each other as the whole arcs; the resistances,
proportional to the velocities, will be also to each other as the same arcs. Therefore if these resistances be
subducted from or added to the motive forces arising from gravity which are as the same arcs, the differences
or sums will be to each other in the same ratio of the arcs; and since the increments and decrements of the
velocities are as these differences or sums, the velocities will be always as the whole arcs; therefore if the
velocities are in any one case as the whole arcs, they will remain always in the same ratio. But at the
beginning of the motion, when the bodies begin to descend and describe those arcs, the forces, which at that
time are proportional to the arcs, will generate velocities proportional to the arcs. Therefore the velocities
will be always as the whole arcs to be described, and therefore those arcs will be described in the same time.

Q.E.D.

Proposition xxvii. Theorem xxii.

If funependulous bodies are resisted in the duplicate ratio of their velocities, the differences between the
times of the oscillations in a resisting medium, and the times of the oscillations in a non-resisting medium
of the same, specific gravity, will be proportional to the arcs described in oscillating nearly.

For let equal pendulums in a resisting medium describe the
unequal arcs A, B; and the resistance of the body in the arc A will
be to the resistance of the body in the correspondent part of the
arc B in the duplicate ratio of the velocities, that is, as AA to BB
nearly. If the resistance in the arc B were to the resistance in the
arc A as AB to AA, the times in the arcs A and B would be equal
(by the last Prop.) Therefore the resistance AA in the arc A, or AB
in the arc B, causes the excess of the time in the arc A above the

time in a non-resisting medium; and the resistance BB causes
the excess of the time in the arc B above the time in a non-
resisting medium. But those excesses are as the efficient forces AB and BB nearly, that is, as the arcs A and
B. Q.E.D.

Cor. 1. Hence from the times of the oscillations in unequal arcs in a resisting medium, may be known the
times of the oscillations in a non-resisting medium of the same specific gravity. For the difference of the
times will be to the excess of the time in the lesser arc above the time in a non-resisting medium as the
difference of the arcs to the lesser arc.

Cor. 2. The shorter oscillations are more isochronal, and very short ones are performed nearly in the same
times as in a non-resisting medium. But the times of those which are performed in greater arcs are a little
greater, because the resistance in the descent of the body, by which the time is prolonged, is greater, in
proportion to the length described in the descent than the resistance in the subsequent ascent, by which the
time is contracted. But the time of the oscillations, both short and long, seems to be prolonged in some
measure by the motion of the medium. For retarded bodies are resisted somewhat less in proportion to the
velocity, and accelerated bodies somewhat more than those that proceed uniformly forwards; because the
medium, by the motion it has received from the bodies, going forwards the same way with them, is more
agitated in the former case, and less in the latter; and so conspires more or less with the bodies moved.
Therefore it resists the pendulums in their descent more, and in their ascent less, than in proportion to the
velocity; and these two causes concurring prolong the time.

180/296



Proposition xxviii. Theorem xxiii.

If a funependulous body, oscillating in a cycloid, be resisted in the ratio of the moments of the time, its
resistance will be to the force of gravity as the excess of the arc described in the whole descent above the
arc described in the subsequent ascent to twice the length of the pendulum.

Let BC represent the arc described in the descent, Ca the arc
described in the ascent, and Aa the difference of the arcs: and
things remaining as they were constructed and demonstrated in
Prop. XXV, the force with which the oscillating body is urged in
any place D will be to the force of resistance as the arc CD to the
arc CO, which is half of that difference Aa. Therefore the force
with which the oscillating body is urged at the beginning or the
highest point of the cycloid, that is, the force of gravity, will be to

the resistance as the arc of the cycloid, between that highest
point and lowest point C, is to the arc CO; that is (doubling those
arcs), as the whole cycloidal arc, or twice the length of the pendulum, to the arc Aa. Q.E.D.

Proposition xxix. Problem vi.

Supposing that a body oscillating in a cycloid is resisted in a duplicate ratio of the velocity: to find the
resistance in each place.

Let Ba be an arc described in one entire oscillation, C the lowest point of the cycloid, and CZ half the whole
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cyclbi(iail arc,_equai to the length of the pendulum; and let it be required to find the resistance of the body in
any place D. Cut the indefinite right line OQ in the points O, S, P, Q, so that (erecting the perpendiculars OK,
ST, PI, QE, and with the centre O, and the aysmptotes OK, OQ, describing the hyperbola TIGE cutting the
perpendiculars ST, PI, QE in T, I, and E, and through the point I drawing KF, parallel to the asymptote OQ,
meeting the asymptote OK in K, and the perpendiculars ST and QE in L and F) the hyperbolic area PIEQ
may be to the hyperbolic area PITS as the arc BC, described inthe descent of the body, to the arc Ca
described in the ascent; and that the area IEF may be to the area ILT as OQ to OS. Then with the
perpendicular MN cut off the hyperbolic area PINM, and let that area be to the hyperbolic area PIEQ as the
arc CZ to the arc BC described in the descent. And if the perpendicular RG cut off the hyperbolic area PIGR,
which shall be to the area PIEQ as any arc CD to the arc BC described in the whole descent, the resistance in

any place D will be to the force of gravity as the area % IEF - IGH to the area PINM.

For since the forces arising from gravity with which the body is urged in the places Z, B, D, a, are as the
arcs CZ, CB, CD, Ca and those arcs are as the areas PINM, PIEQ, PIGR, PITS; let those areas be the
exponents both of the arcs and of the forces respectively. Let Dd be a very small space described by the body
in its descent: and let it be expressed by the very small area RGgr comprehended between the parallels RG,
rg; and produce rg to h, so that GHhg and RGgr may be the contemporaneous decrements of the areas IGH,
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PIGR. And the increment GHhg - Rr IEF, or Rr x HG - Rr IEF, of the area OR [EF - IGH will be to the

0Q 0Q 0Q
decrement RGgr, or Rr x RG, of the area PIGR, as HG - IOE(g to RG; and therefore as OR x HG — 8(% IEF to

OR x GR or OP x PI, that is (because of the equal quantities OR x HG, OR x HR — OR x GR, ORHK - OPIK,

PIHR and PIGR + IGH), as PIGR + IGH — 85 IEF to OPIK. Therefore if the area 875 IEF — IGH be called Y,

and RGgr the decrement of the area PIGR be given, the increment of the area Y will be as PIGR - Y.

Then if V represent the force arising from the gravity, proportional to the arc CD to be described, by which
the body is acted upon in D, and R be put for the resistance, V — R will be the whole force with which the
body is urged in D. Therefore the increment of the velocity is as V — R and the particle of time in which it is
generated conjunctly. But the velocity itself is as the contemporaneous increment of the space described
directly and the same particle of time inversely. Therefore, since the resistance is, by the supposition, as the
square of the velocity, the increment of the resistance will (by Lem. II) be as the velocity and the increment
of the velocity conjunctly, that is, as the moment of the space and V — R conjunctly; and, therefore, if the
moment of the spacebe given, as V — R; that is, if for the force V we put its exponent PIGR, and the
resistance R be expressed by any other area Z, as PIGR - Z.

Therefore the area PIGR uniformly decreasing by the subduction of given moments, the area Y increases
in proportion of PIGR - Y, and the area Z in proportion of PIGR — Z. And therefore if the areas Y and Z
begin together, and at the beginning are equal, these, by the addition of equal moments, will continue to be
equal and in like manner decreasing by equal moments, will vanish together. And, vice versa, if they
together begin and vanish, they will have equal moments and be always equal; and that, because if the
resistance Z be augmented, the velocity together with the arc Ca, described in the ascent of the body, will be
diminished; and the point in which all the motion together with the resistance ceases coming nearer to the
point C, the resistance vanishes sooner than the area Y. And the contrary will happen when the resistance is
diminished.

Now the area Z begins and ends where the resistance is nothing, that is, at the beginning of the motion
where the arc CD is equal to the arc CB, and the right line RG falls upon the right line QE; and at the end of

F
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the motion where the arc CD is equal to the arc Ca, and RG falls upon the right line ST. And the area Y or 88
IEF - IGH begins and ends also where the resistance is nothing, and therefore where OR IEF and IGH are

0Q
equal; that is (by the construction), where the right line RG falls successively upon the right lines QE and ST.
Therefore those areas begin and vanish together, and are therefore always equal. Therefore the area 8—13 IEF
— IGH is equal to the area Z, by which the resistance is expressed, and therefore is to the area PINM, by

which the gravity is expressed, as the resistance to the gravity. Q.E.D.

Cor. 1. Therefore the resistance in the lowest place C is to the force of gravity as the area OP 1EF o the area

oQ
PINM.

Cor. 2. But it becomes greatest where the area PIHR is to the area IEF as OR to OQ. For in that case its
moment (that is, PIGR - Y) becomes nothing.
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Cor. 3. Hence also may be known the velocity in each place, as being in the subduplicate ratio of the
resistance, and at the beginning of the motion equal to the velocity of the body oscillating in the same cycloid
without any resistance.

However, by reason of the difficulty of the calculation by which the resistance and the velocity are found
by this Proposition, we have thought fit to subjoin the Proposition following.

Proposition xxx. Theorem xxiv.

If a right line aB be equal to the arc of a cycloid which an oscillating body describes, and at each of its
points D the perpendiculars DK be erected, which shall be to the length of the pendulum as the resistance of
the body in the corresponding points of the arc to the force of gravity; I say, that the difference between the

arc described in the whole descent and the arc described in the whole subsequent ascent drawn into half
the sum of the same arcs will be equal to the area BKa which all those perpendiculars take up.

Let the arc of the cycloid, described in one entire
oscillation, be expressed by the right line aB, equal to it, and
the arc which would have been described in vacuo by the
length AB. Bisect AB in C, and the point C will represent B
the lowest point of the cycloid, and CD will be as the force
arising from gravity, with which the body in D is urged in the
direction of the tangent of the cycloid, and will have the

Al

M N C o ZD p same ratio to the length of the pendulum as the force in D

has to the force of gravity. Let that force, therefore, be
expressed by that length CD, and the force of gravity by the length of the pendulum; and if in DE you take
DK in the same ratio to the length of the pendulum as the resistance has to the gravity, DK will be the
exponent of the resistance. From the centre C with the interval CA or CB describe a semi-circle BEeA. Let the
body describe, in the least time, the space Dd; and, erecting the perpendiculars DE, de, meeting the
circumference in E and e, they will be as the velocities which the body descending in vacuo from the point B
would acquire in the places D and d. This appears by Prop LII, Book I. Let therefore, these velocities be
expressed by those perpendiculars DE, de; and let DF be the velocity which it acquires in D by falling from B
in the resisting medium. And if from the centre C with the interval CF we describe the circle F/M meeting the
right lines de and AB in f and M, then M will be the place to which it would thenceforward, without farther
resistance, ascend, and df the velocity it would acquire in d. Whence, also, if Fg represent the moment of the
velocity which the body D, in describing the least space Dd, loses by the resistance of the medium; and CN be
taken equal to Cg; then will N be the place to which the body, if it met no farther resistance, would
thenceforward ascend, and MN will be the decrement of the ascent arising from the loss of that velocity.
Draw Fm perpendicular to df, and the decrement Fg of the velocity DF generated by the resistance DK will be
to the increment fm of the same velocity, generated by the force CD, as the generating force DK to the
generating force CD. But because of the similar triangles Fmf, Fhg, FDC, fm is to Fm or Dd as CD to DF; and,
ex aequo, Fg to Dd as DK to DF. Also Fh is to Fg as DF to CF; and, ex aequo perturbate, Fh or MN to Dd as
DK to CF or CM; and therefore the sum of all the MN x CM will be equal to the sum of all the Dd x DK. At the
moveable point M suppose always a rectangular ordinate erected equal to the indeterminate CM, which by a
continual motion is drawn into the whole length Aa; and the trapezium described by that motion, or its
equal, the rectangle Aa x Y2aB, will be equal to the sum of all the MN x CM, and therefore to the sum of all
the Dd x DK, that is, to the area BKVTa. Q.E.D.

Cor. Hence from the law of resistance, and the difference Aa of the arcs Ca, CB, may be collected the
proportion of the resistance to the gravity nearly.
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For if the resistance DK be uniform, the figure BKTa will be a rectangle under Ba and DK; and thence the
rectangle under ¥2Ba and Aa will be equal to the rectangle under Ba and DK, and DK will be equal to Y2Aa.
Wherefore since DK is the exponent of the resistance, and the length of the pendulum the exponent of the
gravity, the resistance will be to the gravity as Y2Aa to the length of the pendulum; altogether as in Prop.
XXVIII is demonstrated.

If the resistance be as the velocity, the figure BKTa will be nearly an ellipsis. For if a body, in a non-
resisting medium, by one entire oscillation, should describe the length BA, the velocity in any place D would
be as the ordinate DE of the circle described on the diameter AB. Therefore since Ba in the resisting medium,
and BA in the non-resisting one, are described nearly in the same times; and therefore the velocities in each
of the points of Ba are to the velocities in the correspondent points of the length BA nearly as Ba is to BA, the
velocity in the point D in the resisting medium will be as the ordinate of the circle or ellipsis described upon
the diameter Ba; and therefore the figure BKVTa will be nearly an ellipsis. Since the resistance is supposed
proportional to the velocity, let OV be the exponent of the resistance in the middle point O; and an ellipsis
BRVSa described with the centre O, and the semi-axes OB, OV, will be nearly equal to the figure BKVTa, and
to its equal the rectangle Aa x BO. Therefore Aa x BO is to OV x BO as the area of this ellipsis to OV x BO;
that is, Aa is to OV as the area of the semi-circle to the square of the radius, or as 11 to 7 nearly; and,

therefore, 111 Aa is to the length of the pendulum as the resistance of the oscillating body in O to its gravity.

Now if the resistance DK be in the duplicate ratio of the velocity, the figure BKVTa will be almost a
parabola having V for its vertex and OV for its axis, and therefore will be nearly equal to the rectangle under
Ba and OV. Therefore the rectangle under 2Ba and Aa is equal to the rectangle %3Ba x OV, and therefore
OV is equal to 34Aa; and therefore the resistance in O made to the oscillating body is to its gravity as 34Aa to
the length of the pendulum.

And I take these conclusions to be accurate enough for practical uses. For since an ellipsis or parabola
BRVSa falls in with the figure BKVTa in the middle point V, that figure, if greater towards the part BRV or
VSa than the other, is less towards the contrary part, and is therefore nearly equal to it.

Proposition xxxi. Theorem xxv.

If the resistance made to an oscillating body in each of the proportional parts of the arcs described be
augmented or diminished in a given ratio, the difference between the arc described in the descent and the
arc described in the subsequent ascent will be augmented or diminished in the same ratio.

For that difference arises from the retardation of the
pendulum by the resistance of the medium, and therefore is
as the wholeretardation and the retarding resistance
proportional thereto. In the foregoing Proposition the
rectangle under the right line Y2aB and the difference Aa of
the arcs CB, Ca, was equal to the area BKTa. And that area, if
the length aB remains, is augmented or diminished in the
ratio of the ordinates DK;that is, in the ratio of the
resistance and is therefore as the lengthaB and the

AMNw € 0o &D B

resistance conjunctly. And therefore the rectangle under Aa and Y2aB is as aB and the resistance conjunctly,
and therefore Aa is as the resistance. Q.E.D.

Cor. 1. Hence if the resistance be as the velocity, the difference of the arcs in the same medium will be as
the whole arc described: and the contrary.
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Cor. 2. If the resistance be in the duplicate ratio of the velocity, that difference will be in the duplicate ratio
of the whole arc: and the contrary.

Cor. 3. And universally, if the resistance be in the triplicate or any other ratio of the velocity, the difference
will be in the same ratio of the whole arc: and the contrary.

Cor. 4. If the resistance be partly in the simple ratio of the velocity, and partly in the duplicate ratio of the
same, the difference will be partly in the ratio of the whole arc, and partly in the duplicate ratio of it: and the
contrary. So that the law and ratio of the resistance will be the same for the velocity as the law and ratio of
that difference for the length of the arc.

Cor. 5. And therefore if a pendulum describe successively unequal arcs, and we can find the ratio of the
increment or decrement of this difference for the length of the arc described, there will be had also the ratio
of the increment or decrement of the resistance for a greater or less velocity.

General Scholium.

From these propositions we may find the resistance of mediums by pendulums oscillating therein. I found
the resistance of the air by the following experiments. I suspended a wooden globe or ball weighing 57 5%

ounces troy, its diameter 6 7/g London inches, by a fine thread on a firm hook, so that the distance between
the hook and the centre of oscillation of the globe was 10V2 feet. I marked on the thread a point 10 feet and 1
inch distant from the centre of suspension; and even with that point I placed a ruler divided into inches, by

the help whereof I observed the lengths of the arcs described by the pendulum. Then I numbered the

1
8
perpendicular to the distance of 2 inches, and thence let go, so that in its whole descent it described an arc of

oscillations in which the globe would lose < part of its motion. If the pendulum was drawn aside from the

2 inches, and in the first whole oscillation, compounded of the descent and subsequent ascent, an arc of

1
8

arc of 134 inches. If in the first descent it described an arc of 4 inches, it lost

almost 4 inches, the same in 164 oscillations lost - part of its motion, so as in its last ascent to describe an

1
8
oscillations, so as in its last ascent to describe an arc of 32 inches. If in the first descent it described an arc

1
8
Therefore the difference between the arcs described in the first descent and the last ascent was in the 1st, 2d,

3d, 4th, 5th, 6th cases, Y4, Y2, 1, 2, 4, 8 inches respectively. Divide those differences by the number of

part of its motion in 121

of 8, 16, 32, or 64 inches, it lost < part of its motion in 69, 35Y2, 182, 9% oscillations, respectively.

oscillations in each case, and in one mean oscillation, wherein an arc of 334, 7v2, 15, 30, 60, 120 inches was

described, the difference of the arcs described in the descent and subsequent ascent will be L 1 .1 4
656’ 242’ 69’ 71
8

37 3—3 parts of an inch, respectively. But these differences in the greater oscillations are in the duplicate ratio
of the arcs described nearly, but in lesser oscillations something greater than in that ratio; and therefore (by
Cor. 2, Prop. XXXI of this Book) the resistance of the globe, when it moves very swift, is in the duplicate ratio

of the velocity, nearly; and when it moves slowly, somewhat greater than in that ratio.

Now let V represent the greatest velocity in any oscillation, and let A, B, and C be given quantities, and let
us suppose the difference of the arcs to be AV + BV + CV2 . Since the greatest velocities are in the cycloid as
/> the arcs described in oscillating, and in the circle as /2 the chords of those arcs; and therefore in equal
arcs are greater in the cycloid than in the circle in the ratio of ¥2 the arcs to their chords; but the times in the
circle are greater than in the cycloid, in a reciprocal ratio of the velocity; it is plain that the differences of the
arcs (which are as the resistance and the square of the time conjunctly) are nearly the same in both curves:
for in the cycloid those differences must be on the one hand augmented, with the resistance, in about the
duplicate ratio of the arc to the chord, because of the velocity augmented in the simple ratio of the same; and
on the other hand diminished, with the square of the time, in the same duplicate ratio. Therefore to reduce
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these observations to the cycloid, we must take the same differences of the arcs as were observed in the
circle, and suppose the greatest velocities analogous to the half, or the whole arcs, that is, to the numbers V2,
1, 2, 4, 8, 16. Therefore in the 2d, 4th, and 6th cases, put 1, 4, and 16 for V; and the difference of the arcs in

the 2d case will become Y2 _ALB+ C; in the 4th case —2 - = 4A + 8B + 16C; in the 6th 8__ 16A + 64B +
121 35V2 92/3

256C. These equations reduced give A = 0,0000916, B = 0,0010847, and C = 0,0029558. Therefore the

difference of the arcs is as 0,0000916V + 0,0010847V3 + 0,0029558V2: and therefore since (by Cor. Prop.
XXX, applied to this case) the resistance of the globe in the middle of the arc described in oscillating, where
the velocity is V, is to its weight as 7/;AV + 7/1,BV3/2 + 34CV2 to the length of the pendulum, if for A, B, and
C youput the numbers found, the resistance of the globe will be to itsweight as
0,0000583V + 0,0007593V~;1 +0,0022169V2 tothe length of the pendulum between the centre of
suspension and the ruler, that is, to 121 inches. Therefore since V in the second case represents 1, in the 4th
case 4, and in the 6th case 16, the resistance will be to the weight of the globe, in the 2d case, as 0,0030345
to 121; in the 4th, as 0,041748 to 121; in the 6th, as 0,61705 to 121.

The arc, which the point marked in the thread described in the 6th case, was of 120 — , OT 1195/,

8
92/4
inches. And therefore since the radius was 121 inches, and the length of the pendulum between the point of
suspension and the centre of the globe was 126 inches, the arc which the centre of the globe described was

1243/ 4, inches. Because the greatest velocity of the oscillating body, by reason of the resistance of the air,

does not fall on the lowest point of the arc described, but near the middle place of the whole arc, this velocity
will be nearly the same as if the globe in its whole descent in a non-resisting medium should describe 623/,

inches, the half of that arc, and that in a cycloid, to which we have above reduced the motion of the
pendulum; and therefore that velocity will be equal to that which the globe would acquire by falling
perpendicularly from a height equal to the versed sine of that arc. But that versed sine in the cycloid is to that
arc 623/, as the same arc to twice the length of the pendulum 252, and therefore equal to 15,278 inches.

Therefore the velocity of the pendulum is the same which a body would acquire by falling, and in its fall
describing a space of 15,278 inches. Therefore with such a velocity the globe meets with a resistance which is
to its weight as 0,61705 to 121, or (if we take that part only of the resistance which is in the duplicate ratio of
the velocity) as 0,56752 to 121.

I found, by an hydrostatical experiment, that the weight of this wooden globe was to the weight of a globe
of water of the same magnitude as 55 to 97: and therefore since 121 is to 213,4 in the same ratio, the
resistance made to this globe of water, moving forwards with the above-mentioned velocity, will be to its
weight as 0,56752 to 213,4, that is, as 1 to 3761/ ,. Whence since the weight of a globe of water, in the time in

which the globe with a velocity uniformly continued describes a length of 30,556 inches, will generate all

that velocity in the falling globe, it is manifest that the force of resistance uniformly continued in the same
1

376%/50

part of the whole velocity. And therefore in the time that the globe, with the same velocity uniformly

time will take away a velocity, which will be less than the other in the ratio of 1 to 3761/, that is, the

continued, would describe the length of its semi-diameter, or 37/, inches, it would lose the 1/,,,, part of its

motion.

I also counted the oscillations in which the pendulum lost ¥4 part of its motion. In the following table the
upper numbers denote the length of the arc described in the first descent, expressed in inches and parts of
an inch; the middle numbers denote the length of the arc described in the last ascent; and in the lowest place
are the numbers of the oscillations. I give an account of this experiment, as being more accurate than that in
which only 1/ part of the motion was lost. I leave the calculation to such as are disposed to make it.
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First descent 2 4 8 16 32 64

Last ascent 12 1 3 6 12 24 48

Numb. of oscill. © 374 ' 272  162V2 | 835 | 41%4 | 22%3

I afterward suspended a leaden globe of 2 inches in diameter, weighing 264 ounces troy by the same
thread, so that between the centre of the globe and the point of suspension there was an interval of 10V/2 feet,
and I counted the oscillations in which a given part of the motion was lost. The first of the following tables
exhibits the number of oscillations in which 1/g part of the whole motion was lost; the second the number of

oscillations in which there was lost part of the same.

First descent 1 2 4 8 16 32 64

Last ascent 7/8 1 7/4 3Y2 7 14 28 56

Numb, of oscill. | 226 228 193 | 140 i 90¥2 i 53 30

First descent 1 2 4 8 16 32 | 64

Last ascent 3/a 12 3 6 12 24 48

Numb. of oscill. 510 518 420 | 318 204 121 70

Selecting in the first table the 3d, 5th, and 7th observations, and expressing the greatest velocities in these
observations particularly by the numbers 1, 4, 16 respectively, and generally by the quantity V as above,

there will come out in the 3d observation Ve _ A + B + C, in the 5th observation 2 4A + 8B + 16C, in

193 901/, ~
the 7th observation 3% =16A + 64B + 256C. These equations reduced give A = 0,001414, B = 0,000297, C =

0,000879. And thence the resistance of the globe moving with the velocity V will be to its weight 26%4
ounces in the same ratio as0,0009V + 0,000208Vs/: + 0,000659V2 to 121 inches, the length of the
pendulum. And if we regard that part only of the resistance which is in the duplicate ratio of the velocity, it
will be to the weight of the globe as 0,000659V2 to 121 inches. But this part of the resistance in the first
experiment was to the weight of the wooden globe of 577/,, ounces as 0,002217V2 to 121; and thence the

resistance of the wooden globe is to the resistance of the leaden one (their velocities being equal) as 577/,
into 0,002217 to 26Y4 into 0,000659, that is, as 7% to 1. The diameters of the two globes were 67/g and 2
inches, and the squares of these are to each other as 47%4 and 4, or 1113/,¢ and 1, nearly. Therefore the

resistances of these equally swift globes were in less than a duplicate ratio of the diameters. But we have not
yet considered the resistance of the thread, which was certainly very considerable, and ought to be
subducted from the resistance of the pendulums here found. I could not determine this accurately, but I
found it greater than a third part of the whole resistance of the lesser pendulum; and thence I gathered that
the resistances of the globes, when the resistance of the thread is subducted, are nearly in the duplicate ratio
of their diameters. For the ratio of 7%/ — Y5 to 1 — Y3, or 10%2 to 1 is not very different from the duplicate ratio
of the diameters 1113/ ¢ to 1.

Since the resistance of the thread is of less moment in greater globes, I tried the experiment also with a
globe whose diameter was 1834 inches. The length of the pendulum between the point of suspension and the
centre of oscillation was 122Y2 inches, and between the point of suspension and the knot in the thread 109Y2
inches. The arc described by the knot at the first descent of the pendulum was 32 inches. The arc described
by the same knot in the last ascent after five oscillations was 28 inches. The sum of the arcs, or the whole arc
described in one mean oscillation, was 60 inches. The difference of the arcs 4 inches. The 1/, part of this, or

the difference between the descent and ascent in one mean oscillation, is 2/, of an inch. Then as the radius
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109Y2 to the radius 122V2, so is the whole arc of 60 inches described by the knot in one mean oscillation to
the whole arc of 671/ inches described by the centre of the globe in one mean oscillation; and so is the

difference 3/ to a new difference 0,4475. If the length of the arc described were to remain, and the length of

the pendulum should be augmented in the ratio of 126 to 122V2, the time of the oscillation would be
augmented, and the velocity of the pendulum would be diminished in the subduplicate of that ratio; so that
the difference 0,4475 of the arcs described in the descent and subsequent ascent would remain. Then if the
arc described be augmented in the ratio of 1243/, to 671/, that difference 0.4475 would be augmented in

the duplicate of that ratio, and so would become 1,5295. These things would be so upon the supposition that
the resistance of the pendulum were in the duplicate ratio of the velocity. Therefore if the pendulum describe
the whole arc of 1243/, inches, and its length between the point of suspension and the centre of oscillation

be 126 inches, the difference of the arcs described in the descent and subsequent ascent would be 1,5295
inches. And this difference multiplied into the weight of the pendulous globe, which was 208 ounces,
produces 318,136. Again; in the pendulum above-mentioned, made of a wooden globe, when its centre of
oscillation, being 126 inches from the point of suspension, described the whole arc of 1243/, inches, the

difference of the arcs described in the descent and ascent was 126/, into ﬁ This multiplied into the
3

weight of the globe, which was 577/,, ounces, produces 49,396. But I multiply these differences into the
weights of the globes, in order to find their resistances. For the differences arise from the resistances, and
are as the resistances directly and the weights inversely. Therefore the resistances are asthe numbers
318,136 and 49,396. But that part of the resistance of the lesser globe, which is in the duplicate ratio of the
velocity, was to the whole resistance as 0,56752 tor 0,61675, that is, as 45,453 to 49,396; whereas that part
of the resistance of the greater globe is almost equal to its whole resistance; and so those parts are nearly as
318,136 and 45,453, that is, as 7 and 1. But the diameters of the globes are 1834 and 67/g; and their squares

3519/, and 4717/ ¢, are as 7,438 and 1, that is, as the resistances of the globes 7 and 1, nearly. The difference

of these ratios is scarce greater than may arise from the resistance of the thread. Therefore those parts of the
resistances which are, when the globes are equal, as the squares of the velocities, are also, when the velocities
are equal, as the squares of the diameters of the globes.

But the greatest of the globes I used in these experiments was not perfectly spherical, and therefore in this
calculation I have, for brevity's sake, neglected some little niceties; being not very solicitous for an accurate
calculus in an experiment that was not very accurate. So that I could wish that these experiments were tried
again with other globes, of a larger size, more in number, and more accurately formed; since the
demonstration of a vacuum depends thereon. If the globes be taken in a geometrical proportion, as suppose
whose diameters are 4, 8, 16, 32 inches; one may collect from the progression observed in the experiments
what would happen if the globes were still larger.

In order to compare the resistances of different fluids with each other, I made the following trials. I
procured a wooden vessel 4 feet long, 1 foot broad, and 1 foot high. This vessel, being uncovered, I filled with
spring water, and, having immersed pendulums therein, I made them oscillate in the water. And I found that
a leaden globe weighing 1661/, ounces, and in diameter 35/g inches, moved therein as it is set down in the

following table; the length of the pendulum from the point of suspension to a certain point marked in the
thread being 126 inches, and to the centre of oscillation 1343/ g inches.
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The arc described in
the first descent, by
a point marked in 64 .32.16 .8 .4.2 .1 R 7 T ¥/
the thread was
inches.

The arc described in
the last ascent was F48 .24 .12 .6 .3 .1% .34 .3/g .3/
inches.

The difference of the
arcs, proportional
to the motion lost,
was inches.

16 .8 .4 .2 .1 .Y [ lYa 1fg .1/

L 1Ya | 12% . 13Y5

w
~

29/60 . 11/5 .

The number of the
oscillations in water.

The number of the } 85Y2 . 287 . 535

oscillations in air.

In the experiments of the 4th column there were equal motions lost in 535 oscillations made in the air, and
11/ in water. The oscillations in the air were indeed a little swifter than those in the water. But if the

oscillations in the water were accelerated in such a ratio that the motions of the pendulums might be equally
swift in both mediums, there would be still the same number 11/, of oscillations in the water, and by these

the same quantity of motion would be lost as before; because the resistance it increased, and the square of
the time diminished in the same duplicate ratio. The pendulums, therefore, being of equal velocities, there
were equal motions lost in 535 oscillations in the air, and 11/, in the water; and therefore the resistance of

the pendulum in the water is to its resistance in the air as 535 to 11/,. This is the proportion of the whole

resistances in the case of the 4th column.

Now let AV + CV2 represent the difference of the arcs described in the descent and subsequent ascent by
the globe moving in air with the greatest velocity V; and since the greatest velocity is in the case of the 4th
column to the greatest velocity in the case of the 1st column as 1 to 8; and that difference of the arcs in the
case of the 4th column to the difference in the case of the 1st column as 2/, t0 16/4.,,, or as 85%2 to 4280;

put in these cases 1 and 8 for the velocities, and 85Y2 and 4280 for the differences of the arcs, and A + C will
be = 8512, and 8A + 64C = 4280 or A + 8C = 535; and then by reducing these equations, there will come out
7C = 449%2 and C=643/,, and A = 212/; and therefore the resistance, which is as 7/;,AV +3/,CV2, will
become as 136/1,V + 489/56V2. Therefore in the case of the 4th column, where the velocity was 1, the whole
resistance is to its part proportional to the square of the velocity as 136/, + 489/ 56. or 6112/, t0 489/56; and
therefore the resistance of the pendulum in water is to that part of the resistance in air, which is proportional
to the square of the velocity, and which in swift motions is the only part that deserves consideration, as
6112/, 10 489/56 and 535 to 11/ 5 conjunctly, that is, as 571 to 1. If the whole thread of the pendulum

oscillating in the water had been immersed, its resistance would have been still greater; so that the
resistance of the pendulum oscillating in the water, that is, that part which is proportional to the square of
the velocity, and which only needs to be considered in swift bodies, is to the resistance of the same whole
pendulum, oscillating in air with the same velocity, as about 850 to 1, that is as, the density of water to the
density of air, nearly.
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In this calculation we ought also to have taken in that part of the resistance of the pendulum in the water
which was as the square of the velocity; but I found (which will perhaps seem strange) that the resistance in
the water was augmented in more than a duplicate ratio of the velocity. In searching after the cause, I
thought upon this, that the vessel was too narrow for the magnitude of the pendulous globe, and by its
narrowness obstructed the motion of the water as it yielded to the oscillating globe. For when I immersed a
pendulous globe, whose diameter was one inch only, the resistance was augmented nearly in a duplicate
ratio of the velocity, I tried this by making a pendulum of two globes, of which the lesser and lower oscillated
in the water, and the greater and higher was fastened to the thread just above the water, and, by oscillating
in the air, assisted the motion of the pendulum, and continued it longer. The experiments made by this
contrivance proved according to the following table.

Arc descr. in first

1 1
descent 6 .8 .4 o L1 e 1
Arcdescr.inlastascent 12 .6 .3 J1Y2 .34 . 3/8 .3/
Diff. of arcs, proport. to o o e

motion lost

Number of oscillations  33/g . 6Y2 . 121/15 . 211/5 . 34 . 53 . 621/5

In comparing the resistances of the mediums with each other, I also caused iron pendulums to oscillate in
quicksilver. The length of the iron wire was about 3 feet, and the diameter of the pendulous globe about %5 of
an inch. To the wire, just above the quicksilver, there was fixed another leaden globe of a bigness sufficient
to continue the motion of the pendulum for some time. Then a vessel, that would hold about 3 pounds of
quicksilver, was filled by turns with quicksilver and common water, that, by making the pendulum oscillate
successively in these two different fluids, I might find the proportion of their resistances; and the resistance
of the quicksilver proved to be to the resistance of water as about 13 or 14 to 1; that is, as the density of
quicksilver to the density of water. When I made use of a pendulous globe something bigger, as of one whose
diameter was about Y2 or %3 of an inch, the resistance of the quicksilver proved to be to the resistance of the
water as about 12 or 10 to 1. But the former experiment is more to be relied on, because in the latter the
vessel was too narrow in proportion to the magnitude of the immersed globe; for the vessel ought to have
been enlarged together with the globe. I intended to have repeated these experiments with larger vessels, and
in melted metals, and other liquors both cold and hot; but I had not leisure to try all: and besides, from what
is already described, it appears sufficiently that the resistance of bodies moving swiftly is nearly proportional
to the densities of the fluids in which they move. I do not say accurately; for more tenacious fluids, of equal
density, will undoubtedly resist more than those that are more liquid; as cold oil more than warm, warm oil
more than rain water, and water more than spirit of wine. But in liquors, which are sensibly fluid enough, as
inair, in salt and fresh water, in spirit of wine, of turpentine, and salts, in oil cleared of its faeces by
distillation and warmed, in oil of vitriol, and in mercury, and melted metals, and any other such like, that
are fluid enough to retail for some time the motion impressed upon them by the agitation of the vessel, and
which being poured out are easily resolved into drops, I doubt not but the rule already laid down may be
accurate enough, especially if the experiments be made with larger pendulous bodies and more swiftly
moved.

Lastly, since it is the opinion of some that there is a certain aethereal medium extremely rare and subtile,
which freely pervades the pores of all bodies; and from such a medium, so pervading the pores of bodies,
some resistance must needs arise; in order to try whether the resistance, which we experience in bodies in
motion, be made upon their outward superficies only, or whether their internal parts meetwith any
considerable resistance upon their superficies, I thought of the following experiment. I suspended a round
deal box by a thread 11 feet long, on a steel hook, by means of a ring of the same metal, so as to make a
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pendulum of the aforesaid length. The hook had a sharp hollow edge on its upper part, so that the upper arc
of the ring pressing on the edge might move the more freely; and the thread was fastened to the lower arc of
the ring. The pendulum being thus prepared, I drew it aside from the perpendicular to the distance of about
6 feet, and that in a plane perpendicular to the edge of the hook, lest the ring, while the pendulum oscillated,
should slide to and fro on the edge of the hook: for the point of suspension, in which the ring touches the
hook, ought to remain immovable. I therefore accurately noted the place to which the pendulum was
brought, and letting it go, I marked three other places, to which it returned at the end of the 1st, 2d, and 3d
oscillation. This I often repeated, that I might find those places as accurately as possible. Then I filled the
box with lead and other heavy metals that were near at hand. But, first, I weighed the box when empty, and
that part of the thread that went round it, and half the remaining part, extended between the hook and the
suspended box; for the thread so extended always acts upon the pendulum, when drawn aside from the

perpendicular, with half its weight. To this weight I added the weight of the air contained in the box. And this
1

78

full of the metals, by extending the thread with its weight, increased the length of the pendulum, I shortened

whole weight was about - of the weight of the box when filled with the metals. Then because the box when

the thread so as to make the length of the pendulum, when oscillating, the same as before. Then drawing
aside the pendulum to the place first marked, and letting it go, I reckoned about 77 oscillations before the
box returned to the second mark, and as many afterwards before it came to the third mark, and as many
after that before it came to the fourth mark. From whence I conclude that the whole resistance of the box,
when full, had not a greater proportion to the resistance of the box, when empty, than 78 to 77. For if their
resistances were equal, the box, when full, by reason of its vis insita, which was 78 times greater than the vis
insita of the same when empty, ought to have continued its oscillating motion so much the longer, and
therefore to have returned to those marks at the end of 78 oscillations. But it returned to them at the end of
77 oscillations.

Let, therefore, A represent the resistance of the box upon its external superficies, and B the resistance of
the empty box on its internal superficies; and if the resistances to the internal parts of bodies equally swift
be as the matter, or the number of particles that are resisted, then 78B will be the resistance made to the
internal parts of the box, when full; and therefore the whole resistance A + B of the empty box will be to the
whole resistance A + 78B of the full box as 77 to 78, and, by division, A + B to 77B as 77 to 1; and thence A +
B to B as 77 x 77 to 1, and, by division again, A to B as 5928 to 1. Therefore the resistance of the empty box in
its internal parts will be above 5000 times less than the resistance on its external superficies. This reasoning
depends upon the supposition that the greater resistance of the full box arises not from any other latent
cause, but only from the action of some subtile fluid upon the included metal.

This experiment is related by memory, the paper being lost in which I had described it; so that I have been
obliged to omit some fractional parts, which are slipt out of my memory; and I have no leisure to try it again.
The first time I made it, the hook being weak, the full box was retarded sooner. The cause I found to be, that
the hook was not strong enough to bear the weight of the box; so that, as it oscillated to and fro, the hook
was bent sometimes this and sometimes that way. I therefore procured a hook of sufficient strength, so that
the point of suspension might remain unmoved, and then all things happened as is above described.

(4
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The Mathematical Principles of Natural Philosophy

by Isaac Newton

Book 2.7
SECTION VII.

Of the motion of fluids, and the resistance made to projected bodies.

Proposition xxxii. Theorem xxvi.

Suppose two similar systems of bodies consisting of an equal number of particles, and let the
correspondent particles be similar and proportional, each in one system to each in the other, and have a
like situation among themselves, and the same given ratio of density to each other; and let them begin to
move among themselves in proportional times, and with like motions (that is, those in one system among

one another, and those in the other among one another). And if the particles that are in the same system do
not touch one another, except it the moments of reflexion; nor attract, nor repel each other, except with
accelerative forces that are as the diameters of the correspondent particles inversely, and the squares of
the velocities directly; I say, that the particles of those systems will continue to move among themselves
with like motions and in proportional times.

Like bodies in like situations are said to be moved among themselves with like motions and in
proportional times, when their situations at the end of those times are always found alike in respect of each
other; as suppose we compare the particles in one system with the correspondent particles in the other.
Hence the times will be proportional, in which similar and proportional parts of similar figures will be
described by correspondent particles. Therefore if we suppose two systems of this kind, the correspondent
particles, by reason of the similitude of the motions at their beginning, will continue to be moved with like
motions, so long as they move without meeting one another; for if they are acted on by no forces,they will go
on uniformly in right lines, by the 1st Law. But if they do agitate one another with some certain forces, and
those forces are as the diameters of the correspondent particles inversely and the squares of the velocities
directly, then, because the particles are in like situations, and their forces are proportional, the whole forces
with which correspondent particles are agitated, and which are compounded of each of the agitating forces
(by Corol. 2 of the Laws), will have like directions, and have the same effect as if they respected centres
placed alike among the particles; and those whole forces will be to each other as the several forces which
compose them, that is, as the diameters of the correspondent particles inversely, and the squares of the
velocities directly: and therefore will cause correspondent particles to continue to describe like figures.
These things will be so (by Cor. 1 and 8, Prop. IV., Book 1), if those centres are at rest but if they are moved,
yet by reason of the similitude of the translations, their situations among the particles of the system will
remain similar, so that the changes introduced into the figures described by the particles will still be similar.
So that the motions of correspondent and similar particles will continue similar till their first meeting with
each other; and thence will arise similar collisions, and similar reflexions; which will again beget similar
motions of the particles among themselves (by what was just now shown), till they mutually fall upon one
another again, and so on ad infinitum.

192/296



Cor. 1. Hence if any two bodies, which are similar and in like situations to the correspondent particles of
the systems, begin to move amongst them in like manner and in proportional times, and their magnitudes
and densities be to each other as the magnitudes and densities of the corresponding particles, these bodies
will continue to be moved in like manner and in proportional times: for the case of the greater parts of both
systems and of the particles is the very same.

Cor. 2. And if all the similar and similarly situated parts of both systems be at rest among themselves; and
two of them, which are greater than the rest, and mutually correspondent in both systems, begin to move in
lines alike posited, with any similar motion whatsoever, they will excite similar motions in the rest of the
parts of the systems, and will continue to move among those parts in like manner and in proportional times;
and will therefore describe spaces proportional to their diameters.

Proposition xxxiii. Theorem xxvii.

The same things faring supposed, I say, that the greater parts of the systems are resisted in a ratio
compounded of the duplicate ratio of their velocities, and the duplicate ratio of their diameters, and the
simple ratio of the density of the parts of the systems.

For the resistance arises partly from the centripetal or centrifugal forces with which the particles of the
system mutually act on each other, partly from the collisions and reflexions of the particles and the greater
parts. The resistances of the first kind are to each other as the whole motive forces from which they arise,
that is, as the whole accelerative forces and the quantities of matter in corresponding parts; that is (by the
supposition), as the squares of the velocities directly, and the distances of the corresponding particles
inversely, and the quantities of matter in the correspondent parts directly: and therefore since the distances
of the particles in one system are to the correspondent distances of the particles of the other as the diameter
of one particle or part in the former system to the diameter of the correspondent particle or part in the other,
and since the quantities of matter are as the densities of the parts and the cubes of the diameters; the
resistances are to each other as the squares of the velocities and the squares of the diameters and the
densities of the parts of the systems. Q.E.D. The resistances of the latter sort are as the number of
correspondent reflexions and the forces of those reflexions conjunctly; but the number of the reflexions are
to each other as the velocities of the corresponding parts directly and the spaces between their reflexions
inversely. And the forces of the reflexions are as the velocities and the magnitudes and the densities of the
corresponding parts conjunctly; that is, as the velocities and the cubes of the diameters and the densities of
the parts. And, joining all these ratios, the resistances of the corresponding parts are to each other as the
squares of the velocities and the squares of the diameters and the densities of the parts conjunctly. Q.E.D.

Cor. 1. Therefore if those systems are two elastic fluids, like our air, and their parts are at rest among
themselves; and two similar bodies proportional in magnitude and density to the parts of the fluids, and
similarly situated among those parts, be any how projected in the direction of lines similarly posited; and the
accelerative forces with which the particles of the fluids mutually act upon each other are as the diameters of
the bodies projected inversely and the squares of their velocities directly; those bodies will excite similar
motions in the fluids in proportional times, and will describe similar spaces and proportional to their
diameters.

Cor. 2. Therefore in the same fluid a projected body that moves swiftly meets with a resistance that is, in
the duplicate ratio of its velocity, nearly. For if the forces with which distant particles act mutually upon one
another should be augmented in the duplicate ratio of the velocity, the projected body would be resisted in
the same duplicate ratio accurately; and therefore in a medium, whose parts when at a distance do not act
mutually with any force on one another, the resistance is in the duplicate ratio of the velocity accurately. Let
there be, therefore, three mediums A, B, C, consisting of similar and equal parts regularly disposed at equal
distances. Let the parts of the mediums A and Brecede from each other with forces that are among
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themselves as T and V; and let the parts of the medium C be entirely destitute of any such forces. And if four
equal bodies D, E, F, G, move in these mediums, the two first D and E in the two first A and B, and the other
two F and G in the third C; and if the velocity of the body D be to the velocity of the body E, and the velocity
of the body F to the velocity of the body G, in the subduplicate ratio of the force T to the force V; the
resistance of the body D to the resistance of the body E, and the resistance of the body F to the resistance of
the body G, will be in the duplicate ratio of the velocities; and therefore the resistance of the body D will be
to the resistance of the body F as the resistance of the body E to the resistance of the body G. Let the bodies
D and F be equally swift, as also the bodies E and G; and, augmenting the velocities of the bodies D and F in
any ratio, and diminishing the forces of the particles of the medium B in the duplicate of the same ratio, the
medium B will approach to the form and condition of the medium C at pleasure; and therefore the
resistances of the equal and equally swift bodies E and G in these mediums will perpetually approach to
equality so that their difference will at last become less than any given. Therefore since the resistances of the
bodies D and F are to each other as the resistances of the bodies E and G, those will also in like manner
approach to the ratio of equality. Therefore the bodies D and F, when they move with very great swiftness,
meet with resistances very nearly equal; and therefore since the resistance of the body F is in a duplicate
ratio of the velocity, the resistance of the body D will be nearly in the same ratio.

Cor. 3. The resistance of a body moving very swift in an elastic fluid is almost the same as if the parts of
the fluid were destitute of their centrifugal forces, and did not fly from each other; if so be that the elasticity
of the fluid arise from the centrifugal forces of the particles, and the velocity be so great as not to allow the
particles time enough to act.

Cor. 4. Therefore, since the resistances of similar and equally swift bodies, in a medium whose distant
parts do not fly from each other, are as the squares of the diameters, the resistances made to bodies moving
with very great and equal velocities in an elastic fluid will be as the squares of the diameters, nearly.

Cor. 5. And since similar, equal, and equally swift bodies, moving through mediums of the same density,
whose particles do not fly from each other mutually, will strike against an equal quantity of matter in equal
times, whether the particles of which the medium consists be more and smaller, or fewer and greater, and
therefore impress on that matter an equal quantity of motion, and in return (by the 3d Law of Motion) suffer
an equal re-action from the same, that is, are equally resisted; it is manifest, also, that in elastic fluids of the
same density, when the bodies move with extreme swiftness, their resistances are nearly equal, whether the
fluids consist of gross parts, or of parts ever so subtile. For the resistance of projectiles moving with
exceedingly great celerities is not much diminished by the subtilty of the medium.

Cor. 6. All these things are so in fluids whose elastic force takes its rise from the centrifugal forces of the
particles. But if that force arise from some other cause, as from the expansion of the particles after the
manner of wool, or the boughs of trees, or any other cause, by which the particles are hindered from moving
freely among themselves, the resistance, by reason of the lesser fluidity of the medium, will be greater than
in the Corollaries above.

Proposition xxxiv. Theorem xxviii.

If in a rare medium, consisting of equal particles freely disposed at equal distances front each other, a
globe and a cylinder described on equal diameters move with equal velocities in the direction of the axis of
the cylinder, the resistance of the globe will be but half so great as that of the cylinder.

For since the action of the medium upon the body is the same (by Cor. 5 of the Laws) whether the body
move in a quiescent medium, or whether the particles of the medium impinge with the same velocity upon
the quiescent body, let us consider the body as if it were quiescent, and see with what force it would be
impelled by the moving medium. Let, therefore, ABKI represent a spherical body described from the centre
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O with the semi-diameter CA, and let the particles of the medium °

spherical body in the directions of right lines parallel to AC; and X N

let FB be one of those right lines. In FB take LB equal to the semi- B H & L F
diameter CB, and draw BD touching the sphere in B. Upon KC and

BD let fall the perpendiculars BE, LD; and the force with which a / {
particle of the medium, impinging on the globe obliquely in the I C A

direction FB, would strike the globe in B, will be to the force with /

which the same particle, meeting the cylinder ONGQ, described

about the globe with the axis ACI, would strike it perpendicularly o

in b, as LD to LB, or BE to BC. Again; the efficacy of this force to Q
move the globe, according to the direction of its incidence FB or AC, is to the efficacy of the same to move the
globe, according to the direction of its determination, that is, in the direction of the right line BC in which it
impels the globe directly, as BE to BC. And, joining these ratios, the efficacy of a particle, falling upon the
globe obliquely in the direction of the right line FB to move the globe in the direction of its incidence, is to
the efficacy of the same particle falling in the same line perpendicularly on the cylinder, to move it in the
same direction, as BE2 to BC2. Therefore if in bE, which is perpendicular to the circular base of the cylinder

%1]:32; then bH will be to bE as the effect of the particle

upon the globe to the effect of the particle upon the cylinder. And therefore the solid which is formed by all
the right lines bH will be to the solid formed by all the right lines bE as the effect of all the particles upon the
globe to the effect of all the particles upon the cylinder. But the former of these solids is a paraboloid whose
vertex is C, its axis CA, and latus rectum CA, and the latter solid is a cylinder circumscribing the paraboloid;
and it is known that a paraboloid is half its circumscribed cylinder. Therefore the whole force of the medium
upon the globe is half of the entire force of the same upon the cylinder. And therefore if the particles of the
medium are at rest, and the cylinder and globe move with equal velocities, the resistance of the globe will be
half the resistance of the cylinder. Q.E.D.

NAO, and equal to the radius AC, we take bH equal to

Scholium.

By the same method other figures may be compared together as to their resistance; and those may be
found which are most apt to continue their motions in resisting mediums. As if upon the circular base CEBH
from the centre O, with the radius OC, and the altitude OD, one would construct a frustum CBGF of a cone,
which should meet with less resistance than any other frustum constructed with the same base and altitude,
and going forwards towards D in the direction of its axis: bisect the altitude OD in Q, and produce OQ to S,
so that QS may be equal to QC, and S will be the vertex of the cone whose frustum is sought.

C

B . E
Whence, by the bye, since the angle CSB is al_vx;;ly_s acﬁte, it follows, t};at,-if-’ghe solid ADBE be generated by
the convolution of an elliptical or oval figure ADBE about its axis AB, and the generating figure be touched
by three right lines FG, GH, HI, in the points P, B, and I, so that GH shall be perpendicular to the axis in the
point of contact B, and FG, HI may be inclined to GH in the angles FGB, BHI of 135 degrees: the solid arising
from the convolution of the figure ADFGHIE about the same axis AB will be less resisted than the former
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solid; if so be that both move forward in the direction of their axis AB, and that the extremity B of each go
foremost. Which Proposition I conceive may be of use in the building of ships.

If the figure DNFG be such a curve, that if, from any point thereof, as N, the perpendicular NM be let fall
on the axis AB, and from the given point G there be drawn the right line GR parallel to a right line touching
the figure in N, and cutting the axis produced in R, MN becomes to GR as GR3 to 4BR x GB2; the solid
described by the revolution of tins figure about its axis AB, moving in the before-mentioned rare medium
from A towards B, will be less resisted than any other circular solid whatsoever, described of the same length
and breadth.

Proposition xxxv. Problem vii.

If a rare medium consist of very small quiescent particles of equal magnitudes, and freely disposed at
equal distances from one another: to find the resistance of a globe moving uniformly forward in this
medium.

Case 1. Let a cylinder described with the same diameter and altitude be conceived to go forward with the
same velocity in the direction of its axis through the same medium; and let us suppose that the particles of
the medium, on which the globe or cylinder falls, fly back with as great a force of reflexion as possible. Then
since the resistance of the globe (by the last Proposition) is but half the resistance of the cylinder, and since
the globe is to the cylinder as 2 to 3, and since the cylinder by falling perpendicularly on the particles, and
reflecting them with the utmost force, communicates to them a velocity double to its own; it follows that the
cylinder, in moving forward uniformly half the length of its axis, will communicate a motion to the particles
which is to the whole motion of the cylinder as the density of the medium to the density of the cylinder; and
that the globe, in the time it describes one length of its diameter in moving uniformly forward, will
communicate the same motion to the particles; and in the time that it describes two thirds of its diameter,
will communicate a motion to the particles which is to the whole motion of the globe as the density of the
medium to the density of the globe. And therefore the globe meets with a resistance, which is to the force by
which its whole motion may be either taken away or generated in the time in which it describes two thirds of
its diameter moving uniformly forward, as the density of the medium to the density of the globe.

Case 2. Let us suppose that the particles of the medium incident on the globe or cylinder are not reflected;
and then the cylinder falling perpendicularly on the particles will communicate its own simple velocity to
them, and therefore meets a resistance but half so great as in the former case, and the globe also meets with
a resistance but half so great.

Case 3. Let us suppose the particles of the medium to fly back from the globe with a force which is neither
the greatest, nor yet none at all, but with a certain mean force; then the resistance of the globe will be in the
same mean ratio between the resistance in the first case and the resistance in the second. Q.E.I.

Cor. 1. Hence if the globe and the particles are infinitely hard, and destitute of all elastic force, and
therefore of all force of reflexion; the resistance of the globe will be to the force by which its whole motion
may be destroyed or generated, in the time that the globe describes four third parts of its diameter, as the
density of the medium to the density of the globe.

Cor. 2. The resistance of the globe, caeteris paribus, is in the duplicate ratio of the velocity.
Cor. 3. The resistance of the globe, caeteris paribus, is in the duplicate ratio of the diameter.

Cor. 4. The resistance of the globe is, caeteris paribus, as the density of the medium.
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Cor. 5. The resistance of the globe is in a ratio compounded of the duplicate ratio of the velocity, and the
duplicate ratio of the diameter, and the ratio of the density of the medium.

Cor. 6. The motion of the globe and its resistance may be thus expounded.

. Let AB be the time in which the globe may, by its resistance uniformly
continued, lose its whole motion. Erect AD, BC perpendicular to AB. Let BC

C G  be that whole motion, and through the point C, the asymptotes being AD, AB,
> describe the hyperbola CF. Produce AB to any point E. Erect the perpendicular

________E EF meeting the hyperbola in F. Complete the parallelogram CBEG, and draw
A B ¥. AF meeting BC in H. Then if the globe in any time BE, with its first motion BC

uniformly continued, describes in a non-resisting medium the space CBEG expounded by the area of the
parallelogram, the same in a resisting medium will describe the space CBEF expounded by the area of the
hyperbola; and its motion at the end of that time will be expounded by EF, the ordinate of the hyperbola,
there being lost of its motion the part FG. And its resistance at the end of the same time will be expounded
by the length BH, there being lost of its resistance the part CH. All these things appear by Cor. 1 and 3, Prop.
V., Book II.

Cor. 7. Hence if the globe in the time T by the resistance R uniformly continued lose its whole motion M,

the same globe in the time t in a resisting medium, wherein the resistance R decreases in a duplicate ratio of
tM ™ By g ;

rt,m, the part Tyt remaining; and will describe a space

which is to the space described in the same time t, with the uniform motion M, as the logarithm of the

number L+t multiplied by the number 2,302585092994 is to the number E, because the hyperbolic area

T
BCFE is to the rectangle BCGE in that proportion.

the velocity, will lose out of its motion M the pa

Scholium.

I have exhibited in this Proposition the resistance and retardation of spherical projectiles in mediums that
are not continued, and shewn that this resistance is to the force by which the whole motion of the globe may
be destroyed or produced in the time in which the globe can describe two thirds of its diameter; with a
velocity uniformly continued, as the density of the medium to the density of the globe, if so be the globe and
the particles of the medium be perfectly elastic, and are endued with the utmost force of reflexion; and that
this force, where the globe and particles of the medium are infinitely hard and void of any reflecting force, is
diminished one half. But in continued mediums, as water, hot oil, and quicksilver, the globe as it passes
through them does not immediately strike against all the particles of the fluid that generate the resistance
made to it, but presses only the particles that lie next to it, which press the particles beyond, which press
other particles, and so on; and in these mediums the resistance is diminished one other half. A globe in these
extremely fluid mediums meets with a resistance that is to the force by which its whole motion may be
destroyed or generated in the time wherein it can describe, with that motion uniformly continued, eight third
parts of its diameter, as the density of the medium to the density of the globe. This I shall endeavour to shew
in what follows.

Proposition xxxvi. Problem viii.

To define the motion of water running out of a cylindrical vessel through a hole made at the bottom.

Let ACDB be a cylindrical vessel, AB the mouth of it, CD the bottom parallel to the horizon, EF a circular
hole in the middle of the bottom, G the centre of the hole, and GH the axis of the cylinder perpendicular to
the horizon. And suppose a cylinder of ice APQB to be of the same breadth with the cavity of the vessel, and
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to have the same axis, and to descend perpetually with an uniform motion, and th * " ' o
touch the superficies AB, dissolve into water, and flow down by their weight into P
the vessel, and in their fall compose the cataract or column of water ABNFEM,

passing through the hole EF, and filling up the same exactly. Let the uniform

velocity of the descending ice and of the contiguous water in the circle AB be that ¥ »
which the water would acquire by falling through the space IH; and let IH and H
HG lie in the same right line; and through the point I let there be drawn the
right line KL parallel to the horizon and meeting the ice on both the sides thereof
in K and L. Then the velocity of the water running out at the hole EF will be the

same that it would acquire by falling from I through the space IG. Therefore, by
Galileo's Theorems, IG will be to IH in the duplicate ratio of the velocity of the
water that runs out at the hole to the velocity of the water in the circle AB, thatis, & TG F. D
in the duplicate ratio of thecircle AB to the circle EF; those circles being '

reciprocally as the velocities of the water which in the same time and in equal quantities passes severally
through each of them, and completely fills them both. We are now considering the velocity with which the
water tends to the plane of the horizon. But the motion parallel to the same, by which the parts of the falling
water approach to each other, is not here taken notice of; since it is neither produced by gravity, nor at all
changes the motion perpendicular to the horizon which the gravity produces. We suppose, indeed, that the
parts of the water cohere a little, that by their cohesion they may in falling approach to each other with
motions parallel to the horizon in order to form one single cataract, and to prevent their being divided into
several: but the motion parallel to the horizon arising from this cohesion does not come under our present
consideration.

Case 1. Conceive now the whole cavity in the vessel, which encompasses the falling water ABNFEM, to be
full of ice, so that the water may pass through the ice as through a funnel. Then if the water pass very near to
the ice only, without touching it; or, which is the same thing, if by reason of the perfect smoothness of the
surface of the ice, the water, though touching it, glides over it with the utmost freedom, and without the least
resistance; the water will run through the hole EF with the same velocity as before, and the whole weight of
the column of water ABNFEM will be all taken up as before in forcing out the water, and the bottom of the
vessel will sustain the weight of the ice encompassing that column.

Let now the ice in the vessel dissolve into water; yet will the efflux of the water remain, as to its velocity,
the same as before. It will not be less, because the ice now dissolved will endeavour to descend; it will not be
greater, because the ice, now become water, cannot descend without hindering the descent of other water
equal to its own descent. The same force ought always to generate the same velocity in the effluent water.

But the hole at the bottom of the vessel, by reason of the oblique motions of the particles of the effluent
water, must be a little greater than before. For now the particles of the water do not all of them pass through
the hole perpendicularly, but, flowing down on all parts from the sides of the vessel, and converging towards
the hole, pass through it with oblique motions; and in tending downwards meet in a stream whose diameter
is a little smaller below the hole than at the hole itself; its diameter being to the diameter of the hole as 5 to 6,
or as 5Y2 to 61/2, very nearly, if I took the measures of those diameters right. I procured a very thin flat plate,

having a hole pierced in the middle, the diameter of the circular hole being g parts of an inch. And that the

stream of running waters might not be accelerated in falling, and by that acceleration become narrower, I
fixed this plate not to the bottom, but to the side of the vessel, so as to make the water go out in the direction
of a line parallel to the horizon. Then, when the vessel was full of water, I opened the hole to let it run out;
and the diameter of the stream, measured with great accuracy at the distance of about half an inch from the

hole, was j_(l) of an inch. Therefore the diameter of this circular hole was to the diameter of the stream very

nearly as 25 to 21. So that the water in passing through the hole converges on all sides, and, after it has run
out of the vessel, becomes smaller by converging in that manner, and by becoming smaller is accelerated till
it comes to the distance of half an inch from the hole, and at that distance flows in a smaller stream and with
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greater celerity than in the hole itself, and this in the ratio of 25 x 25 to 21 x 21, or 17 to 12, very nearly; that
is, in about the subduplicate ratio of 2 to 1. Now it is certain from experiments, that the quantity of water
running out in a given time through a circular hole made in the bottom of a vessel is equal to the quantity,
which, flowing with the aforesaid velocity, would run out in the same time through another circular hole,
whose diameter is to the diameter of the former as 21 to 25. And therefore that running water in passing
through the hole itself has a velocity downwards equal to that which a heavy body would acquire in falling
through half the height of the stagnant water in the vessel, nearly. But, then, after it has run out, it is still
accelerated by converging, till it arrives at a distance from the hole that is nearly equal to its diameter, and
acquires a velocity greater than the other in about the subduplicate ratio of 2 to 1; which velocity a heavy
body would nearly acquire by falling through the whole height of the stagnant water in the vessel.

Therefore in what follows let the diameter of the stream be represented by

A '““'"“%‘“““'""‘ B that lesser hole which we called EF. And imagine another plane VW above the
fﬂ hole EF, and parallel to the plane there of, to be placed at a distance equal to

) N the diameter of the same hole, and to be pierced through with a greater hole

ST, of such a magnitude that a stream which will exactly fill the lower hole EF

R . may pass through it; the diameter of which hole will therefore be to the

LA A I e ./ diameter of the lower hole as 25 to 21, nearly. By this means the water will run

' Z : perpendicularly out at the lower hole; and the quantity of the water running out
o EG® - » wil be, according to the magnitude of this last hole, the same, very nearly,

which the solution of the Problem requires. The space included between the
two planes and the falling stream may be considered as the bottom of the vessel. But, to make the solution
more simple and mathematical, it is better to take the lower plane alone for the bottom of the vessel, and to
suppose that the water which flowed through the ice as through a funnel, and ran out of the vessel through
the hole EF made in the lower plane, preserves its motion continually, and that the ice continues at rest.
Therefore in what follows let ST be the diamter of a circular hole described from the centre Z, and let the
stream run out of the vessel through that hole, when the water in the vessel is all fluid. And let EF be the
diameter of the hole, which the stream, in falling through, exactly fills up, whether the water runs out of the
vessel by that upper hole ST, or flows through the middle of the ice in the vessel, as through a funnel. And let
the diameter of the upper hole ST be to the diameter of the lower EF as about 25 to 21, and let the
perpendicular distance between the planes of the holes be equal to the diameter of the lesser hole EF. Then
the velocity of the water downwards, in running out of the vessel through the hole ST, will be in that hole the
same that a body may acquire by falling from half the height IZ; and the velocity of both the falling streams
will be in the hole EF, the same which a body would acquire by falling from the whole height IG.

Case 2. If the hole EF be not in the middle of the bottom of the vessel, but in some other part thereof, the
water will still run out with the same velocity as before, if the magnitude of the hole be the same. For though
an heavy body takes a longer timein descending to the same depth, by an oblique line, than by a
perpendicular line, yet in both cases it acquires in its descent the same velocity; as Galileo has demonstrated.

Case 3. The velocity of the water is the same when it runs out through a hole in the side of the vessel. For if
the hole be small, so that the interval between the superficies AB and KL may vanish as to sense, and the
stream of water horizontally issuing out may form a parabolic figure: from the latus rectum of this parabola
may be collected, that the velocity of the effluent water is that which a body may acquire by falling the height
IG or HG of the stagnant water in the vessel. For, by making an experiment, I found that if the height of the
stagnant water above the hole were 20 inches, and the height of the hole above a plane parallel to the
horizon were also 20 inches, a stream of water springing out from thence would fall upon the plane, at the
distance of 37 inches, very nearly, from a perpendicular let fall upon that plane from the hole. For without
resistance the stream would have fallen upon the plane at the distance of 40 inches, the latus rectum of the
parabolic stream being 80 inches.
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Case 4. If the effluent water tend upward, it will still issue forth with the same velocity. For the small
stream of water springing upward; ascends with a perpendicular motion to GH or GI, the height of the
stagnant water in the vessel; excepting in so far as its ascent is hindered a little by the resistance of the air;
and therefore it springs out with the same velocity that it would acquire in falling from that height. Every
particle of the stagnant water is equally pressed on all sides (by Prop. XIX., Book II), and, yielding to the
pressure, tends always with an equal force, whether it descends through the hole in the bottom of the vessel,
or gushes out in an horizontal direction through a hole in the side, or passes into a canal, and springs up
from thence through a little hole made in the upper part of the canal. And it may not only be collected from
reasoning, but is manifest also from the well-known experiments just mentioned, that the velocity with
which the water runs out is the very same that is assigned in this Proposition.

Case 5. The velocity of the effluent water is the same, whether the figure of the hole be circular, or square,
or triangular, or any other figure equal to the circular; for the velocity of the effluent water does not depend
upon the figure of the hole, but arises from its depth below the plane KL.

1 Case 6. If the lower part of the vessel ABDCbe immersed into stagnant

" Sttt ind— B water, and the height of the stagnant water above the bottom of the vessel be

fﬂ GR, the velocity with which the water that is in the vessel will run out at the

) N hole EF into the stagnant water will be the same which the water would acquire

by falling from the height IR; for the weight of all the water in the vessel that is

R ' below the superficies of the stagnant water will be sustained in equilibrio by

LA A I e ./ the weight of the stagnant water, and therefore does riot at all accelerate the

. Z . motion of the descending water in the vessel. This case will also appear by
oy EGE® - P experiments, measuring the times in which the water will run out.

Cor. 1. Hence if CA the depth of the water be produced to K, so that AK may be to CK in the duplicate ratio
of the area of a hole made in any part of the bottom to the area of the circle AB, the velocity of the effluent
water will be equal to the velocity which the water would acquire by falling from the height KC.

Cor. 2. And the force with which the whole motion of the effluent water may be generated is equal to the
weight of a cylindric column of water, whose base is the hole EF, and its altitude 2GI or 2CK. For the effluent
water, in the time it becomes equal to this column, may acquire, by falling by its own weight from the height
GI, a velocity equal to that with which it runs out.

Cor. 3. The weight of all the water in the vessel ABDC is to that part of the weight which is employed in
forcing out the water as the sum of the circles AB and EF to twice the circle EF. For let IO be a mean
proportional between IH and IG, and the water running out at the hole EF will, in the time that a drop
falling from I would describe the altitude IG, become equal to a cylinder whose base is the circle EF and its
altitude 2IG, that is, to a cylinder whose base is the circle AB, and whose altitude is 2I0. For the circle EF is
to the circle AB in the subduplicate ratio of the altitude IH to the altitude IG; that is, in the simple ratio of the
mean proportional IO to the altitude IG. Moreover, in the time that a drop falling from I can describe the
altitude IH, the water that runs out will hare become equal to a cylinder whose base is the circle AB, and its
altitude 2IH; and in the time that a drop falling from I through H to G describes HG, the difference of the
altitudes, the effluent water, that is, the water contained within the solid ABNFEM, will be equal to the
difference of the cylinders, that is, to a cylinder whose base is AB, and its altitude 2HO. And therefore all the
water contained in the vessel ABDC is to the whole falling water contained in the said solid ABNFEM as HG
to 2HO, that is, as HO + OG to 2HO, or IH + IO to 2IH. But the weight of all the water in the solid ABNFEM
is employed in forcing out the water: and therefore the weight of all the water in the vessel is to that part of
the weight that is employed in forcing out the water as IH + IO to 2IH, and therefore as the sum of the circles
EF and AB to twice the circle EF.

Cor. 4. And hence the weight of all the water in the vessel ABDC is to the other part of the weight which is
sustained by the bottom of the vessel as the sum of the circles AB and EF to the difference of the same
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Cor. 5. And that part of the weight which the bottom of the vessel sustains is to the other part of the weight
employed in forcing out the water as the difference of the circles AB and EF to twice the lesser circle EF, or
as the area of the bottom to twice the hole.

Cor. 6. That part of the weight which presses upon the bottom is to the whole weight of the water
perpendicularly incumbent thereon as the circle AB to the sum of the circles AB and EF, or as the circle AB to
the excess of twice the circle AB above the area of the bottom. For that part of the weight which presses upon
the bottom is to the weight of the whole water in the vessel as the difference of the circles AB and EF to the
sum of the same circles (by Cor. 4); and the weight of the whole water in the vessel is to the weight of the
whole water perpendicularly incumbent on the bottom as the circle AB to the difference of the circles AB and
EF. Therefore, ex aequo perturbateé, that part of the weight which presses upon the bottom is to the weight of
the whole water perpendicularly incumbent thereon as the circle AB to the sum of the circles AB and EF, or
the excess of twice the circle AB above the bottom.

Cor. 7. If in the middle of the hole EF there be placed the little circle PQ

described about the centre G, and parallel to the horizon, the weight of water = I L
which that little circle sustains is greater than the weight of a third part of a Aj- 3L

cylinder of water whose base is that little circle and its height GH. For let | ™ ;"' \. /
ABNFEM be the cataract or column of falling water whose axis is GH, as \\.‘ _:'= 1 J,—*’
above, and let all the water, whose fluidity is not requisite for the ready and A E “'

quick descent of the water, be supposed to A be congealed, as well round M‘ : ‘, ‘f‘k
about the cataract, as above the little circle. And let PHQ be the column of .‘ : ’ {

water congealed above the little circle, whose vertex is H, and its altitude GH. ." :. E l

And suppose this cataract to fall with its whole weight downwards, and not in : I i ; f

the least to lie against or to press PHQ, but to glide freely by it without any € E PGQF D

friction, unless, perhaps, just at the very vertex of the ice, where the cataract

at the beginning of its fall may tend to a concave figure. And as the congealed water AMEC, BNFD, lying
round the cataract, is convex in its internal superficies AME, BNF, towards the falling cataract, so this
column PHQ will be convex towards the cataract also, and will therefore be greater than a cone whose base
is that little circle PQ and its altitude GH; that is, greater than a third part of a cylinder described with the
same base and altitude. Now that little circle sustains the weight of this column, that is, a weight greater than
the weight of the cone, or a third part of the cylinder.

Cor. 8. The weight of water which the circle PQ, when very small, sustains, seems to be less than the
weight of two thirds of a cylinder of water whose base is that little circle, and its altitude HG. For, things
standing as above supposed, imagine the half of a spheroid described whose base is that little circle, and its
semi-axis or altitude HG. This figure will be equal to two thirds of that cylinder, and will comprehend within
it the column of congealed water PHQ, the weight of which is sustained by that little circle. For though the
motion of the water tends directly downwards, the external superficies of that column must yet meet the
base PQ in an angle somewhat acute, because the water in its fall is perpetually accelerated, and by reason of
that acceleration become narrower. Therefore, since that angle is less than a right one, this column in the
lower parts thereof will lie within the hemi-spheroid. In the upper parts also it will be acute or pointed;
because to make it otherwise, the horizontal motion of the water must be at the vertex infinitely more swift
than its motion towards the horizon. And the less this circle PQ is, the more acute will the vertex of this
column be; and the circle being diminished in infinitum the angle PHQ will be diminished in infinitum, and
therefore the column will lie within the hemi-spheroid. Therefore that column is less than that hemi-
spheroid, or than two-third parts of the cylinder whose base is that little circle, and its altitude GH. Now the
little circle sustains a force of water equal to the weight of this column, the weight of the ambient water being
employed in causing its efflux out at the hole.
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Cor. 9. The weight of water which the little circle PQ sustains, when it is very small, is very nearly equal to
the weight of a cylinder of water whose base is that little circle, and its altitude Y2GH; for this weight is an
arithmetical mean between the weights of the cone and the hemi-spheroid above mentioned. But if that little
circle be not very small, but on the contrary increased till it be equal to the hole EF, it will sustain the weight
of all the water lying perpendicularly above it, that is, the weight of a cylinder of water whose base is that
little circle, and its altitude GH.

Cor. 10. And (as far as I can judge) the weight which this little circle sustains is always to the weight of a
cylinder of water whose base is that little circle, and its altitude Y2GH, as EF2 to EF2 — 12PQ2, or as the
circle EF to the excess of this circle above half the little circle PQ, very nearly.

Lemma iv.

If a cylinder move uniformly forward in the direction of its length, the resistance made thereto is not at all
changed by augmenting or diminishing that length; and is therefore the same with the resistance of a
circle, described with the same diameter, and moving forward with the same velocity in the direction, of a
right line perpendicular to its plane.

For the sides are not at all opposed to the motion; and a cylinder becomes a circle when its length is
diminished in infinitum.

Proposition xxxvii. Theorem xxix.

If a cylinder move uninformly forward in a compressed, infinite, and non-elastic fluid, in the direction of
its length, the resistance arising from the magnitude of its transverse section is to the force by which its
whole motion may be destroyed or generated, in the time that it moves four times its length, as the density
of the medium to the density of the cylinder, nearly.

For let the vessel ABDC touch the surface of stagnant water with its bottom CD, and let the water run out
of this vessel into the stagnant water through the cylindric canal EFTS perpendicular co the horizon; and let
the little circle PQ be placed parallel to the horizon any where in the middle )

of the canal; and produce CA to K, so that AK may be to CK in the duplicate AE'*“‘““"":*_['"'--"---_—I-'
of the ratio, which the excess of the orifice of the canal EF above the little H:I T
circle PQ bears to the circle AB. Then it is manifest (by Case 5, Case 6, and . i d
Cor. 1, Prop. XXXVI) that the velocity of the water passing through the i ID
annular space between the little circle and the sides of the vessel will be the C G! .
very same which the water would acquire by falling, and in its fall describing E
the altitude KC or IG. P r-—-? JF

And (by Cor. 10, Prop. XXXVI) if the breadth of the vessel be infinite, so Gleeeeemen. T
that the lineola HI may vanish, and the altitudes IG, HG become equal; the
force of the water that flows down and presses upon the circle will be to the

weight of a cylinder whose base is that little circle, and the altitude Y2IG, as EF2 to EF2 — 12PQ2, very nearly.
For the force of the water flowing downward uniformly through the whole canal will be the same upon the
little circle PQ in whatsoever part of the canal it be placed.

Let now the orifices of the canal EF, ST be closed, and let the little circle ascend in the fluid compressed on
every side, and by its ascent let it oblige the water that lies above it to descend through the annular space
between the little circle and the sides of the canal. Then will the velocity of the ascending little circle be to the
velocity of the descending water as the difference of the circles EF and PQ, is to the circle PQ; and the
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velocity of the ascending little circle will be to the sum of the velocities, that is, to the relative velocity of the
descending water with which it passes by the little circle in its ascent, as the difference of the circles EF and
PQ to the circle EF, or as EF2 — PQ2 to EF2. Let that relative velocity be equal to the velocity with which it
was shewn above that the water would pass through the annular space, if the circle were to remain unmoved,
that is, to the velocity which the water would acquire by falling, and in its fall describing the altitude IG; and
the force of the water upon the ascending circle will be the same as before (by Cor. 5, of the Laws of Motion);
that is, the resistance of the ascending little circle will be to the weight of a cylinder of water whose base is
that little circle, and its altitude ¥2IG, as EF2 to EF2 — 12PQ2, nearly. But the velocity of the little circle will
be to the velocity which the water acquires by falling, and in its fall describing the altitude IG, as EF2 — PQ2
to EF2.

Let the breadth of the canal be increased in infinitum; and the ratios between EF2 — PQ2 and EF2, and
between EF2 and EF2 — 12PQ2, will become at last ratios of equality. And therefore the velocity of the little
circle will now be the same which the water would acquire in falling, and in its fall describing the altitude IG:
and the resistance will become equal to the weight of a cylinder whose base is that little circle, and its
altitude half the altitude IG, from which the cylinder must fall to acquire the velocity of the ascending circle;
and with this velocity the cylinder in the time of its fall will describe four times its length. But the resistance
of the cylinder moving forward with this velocity in the direction of its length is the same with the resistance
of the little circle (by Lem. IV), and is therefore nearly equal to the force by which its motion may be
generated while it describes four times its length.

If the length of the cylinder be augmented or diminished, its motion, and the time in which it describes
four times its length, will be augmented or diminished in the same ratio, and therefore the force by which
the motion so increased or diminished, may be destroyed or generated, will continue the same; because the
time is increased or diminished in the same proportion; and therefore that force remains still equal to the
resistance of the cylinder, because (by Lem. IV) that resistance will also remain the same.

If the density of the cylinder be augmented or diminished, its motion, and the force by which its motion
may be generated ordestroyed in the same time, will be augmented or diminished in the same ratio.
Therefore the resistance of any cylinder whatsoever will be to the force by which its whole motion may be
generated or destroyed, in the time during which it moves four times its length, as the density of the medium
to the density of the cylinder, nearly. Q.E.D.

A fluid must be compressed to become continued; it must be continued and non-elastic, that all the
pressure arising from its compression may be propagated in an instant; and so, acting equally upon all parts
of the body moved, may produce no change of the resistance. The pressure arising from the motion of the
body is spent in generating a motion in the parts of the fluid, and this creates the resistance. But the pressure
arising from the compression of the fluid, be it ever so forcible, if it be propagated in an instant, generates no
motion in the parts of a continued fluid, produces no change at all of motion therein; and therefore neither
augments nor lessens the resistance. This is certain, that the action of the fluid arising from the compression
cannot be stronger on the hinder parts of the body moved than on its fore parts, and therefore cannot lessen
the resistance described in this proposition. And if its propagation be infinitely swifter than the motion of
the body pressed, it will not be stronger on the fore parts than on the hinder parts. But that action will be
infinitely swifter, and propagated in an instant, if the fluid be continued and non-elastic.

Cor. 1. The resistances, made to cylinders going uniformly forward in the direction of their lengths
through continued infinite mediums are in a ratio compounded of the duplicate ratio of the velocities and
the duplicate ratio of the diameters, and the ratio of the density of the mediums.

Cor. 2. If the breadth of the canal be not infinitely increased but the cylinder go forward in the direction of
its length through an included quiescent medium, its axis all the while coinciding with the axis of the canal,
its resistance will be to the force by which its whole motion, in the time in which it describes four times its
length, may be generated or destroyed, in a ratio compounded of the ratio of EF2 to EF2 — 1/2PQ2 once, and
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the ratio of EF2 to EF2 — PQ2 twice, and the ratio of the density of the mediumt = o o
KX L
Cor. 3. The same thing supposed, and that alength L is to the quadruple of A E i

the length of the cylinder in a ratio compounded of the ratio EF2 — 2PQ2 to . '

EF2 once, and the ratio of EF2 — PQ2 to EF2 twice; the resistance of the :

cylinder will be to the force by which its whole motion, in the time during d Gl

which it describes the length L, may be destroyed or generated, as the density B :

f th i h ity of the cyli .

of the medium to the density of the cylinder p JF

Gleereremes T

Scholium.

In this proposition we have investigated that resistance alone which arises from the magnitude of the
transverse section of the cylinder, neglecting that part of the same which may arise from the obliquity of the
motions. For as, in Case 1, of Prop. XXXVI., the obliquity of the motions with which the parts of the water in
the vessel converged on every side to the hole EF hindered the efflux of the water through the hole, so, in this
Proposition, the obliquity of the motions, with which the parts of the water, pressed by the antecedent
extremity of the cylinder, yield to the pressure, and diverge on all sides, retards their passage through the
places that lie round that antecedent extremity, toward the hinder parts of the cylinder, and causes the fluid
to be moved to a greater distance; which increases the resistance, and that in the same ratio almost in which
it diminished the efflux of the water out of the vessel, that is, in the duplicate ratio of 25 to 21, nearly. And as,
in Case 1, of that Proposition, we made the parts of the water pass through the hole EF perpendicularly and
in the greatest plenty, by supposing all the water in the vessel lying round the cataract to be frozen, and that
part of the water whose motion was oblique, and useless to remain without motion, so in this Proposition,
that the obliquity of the motions may be taken away, and the parts of the water may give the freest passage to
the cylinder, by yielding to it with the most direct and quick motion possible, so that only so much resistance
may remain as arises from the magnitude of the transverse section, and which is incapable of diminution,
unless by diminishing the diameter of the cylinder; we must conceive those parts of the fluid whose motions
are oblique and useless, and produce resistance, to be at rest among themselves at both extremities of the
cylinder, and there to cohere, and be joined to the cylinder. Let ABCD be a rectangle, and let AE and BE be
two parabolic arcs, described with the axis AB, and with a -

latus rectum that is to the space HG, which must be E—-—Ia'l
described by the cylinder in falling, in order to acquire the . C A

velocity with which it moves, as HG to %2AB. Let CF and DF T e
be two other parabolic arcs described with the axis CD, and ~ ™. e £

a latus rectum quadruple of theformer; and by the

convolution of the figure about the axis EF let there be generated a solid, whose middle part ABDC is the
cylinder we are here speaking of, and whose extreme parts ABE and CDF contain the parts of the fluid at rest
among themselves, and concreted into two hard bodies, adhering to the cylinder at each end like a head and
tail. Then if this solid EACFDB move in the direction of the length of its axis FE toward the parts beyond E,
the resistance will be the same which we have here determined in this Proposition, nearly; that is, it will
have the same ratio to the force with which the whole motion of the cylinder may be destroyed or generated,
in the time that it is describing the length 4AC with that motion uniformly continued, as the density of the
fluid has to the density of the cylinder, nearly. And (by Cor. 7, Prop. XXXVI) the resistance must be to this
force in the ratio of 2 to 3, at the least.

Lemma V.
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If a cylinder, a sphere, and a spheroid, of equal breadths be placed successively in the middle of a cylindric
canal, so that their axes may coincide with the axis of the canal, these bodies will equally hinder the
passage of the water through the canal.

For the spaces lying between the sides of the canal, and the cylinder, sphere, and spheroid, through which
the water passes, are equal; and the water will pass equally through equal spaces.

This is true, upon the supposition that all the water above the cylinder, sphere, or spheroid, whose fluidity
is not necessary to make the passage of the water the quickest possible, is congealed, as was explained above
in Cor. 7, Prop. XXXVI.

Lemma vi.

The same supposition remaining, the fore-mentioned bodies are equally acted on by the water flowing
through the canal.

This appears by Lem. V and the third Law. For the water and the bodies act upon each other mutually and
equally.

Lemma vii.

If the water be at rest in the canal, and these bodies move with equal velocity and the contrary way
through the canal, their resistances will be equal among themseluves.

This appears from the last Lemma, for the relative motions remain the same among themselves.

Scholium.

The case is the same of all convex and round bodies, whose axes coincide with the axis of the canal. Some
difference may arise from a greater or less friction; but in these Lemmata we suppose the bodies to be
perfectly smooth, and the medium to be void of all tenacity and friction; and that those parts of the fluid
which by their oblique and superfluous motions may disturb, hinder, and retard the flux of the water
through the canal, are at rest among themselves; being fixed like water by frost, and adhering to the fore and
hinder parts of the bodies in the manner explained in the Scholium of thelast Proposition; for in what
follows we consider the very least resistance that round bodies described with the greatest given transverse
sections can possibly meet with.

Bodies swimming upon fluids, when they move straight forward, cause the fluid to ascend at their fore
parts and subside at their hinder parts, especially if they are of an obtuse figure; and thence they meet with a
little more resistance than if they were acute at the head and tail. And bodies moving in elastic fluids, if they
are obtuse behind and before, condense the fluid a little more at their fore parts, and relax the same at their
hinder parts; and therefore meet also with a little more resistance than if they were acute at the head and
tail. But in these Lemmas and Propositions we are not treating of elastic but non-elastic fluids; not of bodies
floating on the surface of the fluid, but deeply immersed therein. And when the resistance of bodies in non-
elastic fluids is once known, we may then augment this resistance a little in elastic fluids, as our air; and in
the surfaces of stagnating fluids, as lakes and seas.
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Proposition xxxviii. Theorem xxx.

If a globe move uniformly forward in a compressed, infinite, and non-elastic fluid, its resistance is to the
force by which its whole motion may be destroyed or generated, in the time that it describes eight third
parts of its diameter, as the density of the fluid to the density of the globe, very nearly. For the globe is to its
circumscribed cylinder as two to three; and therefore the force which can destroy all the motion of the
cylinder, while the same cylinder is describing the length of four of its diameters, will destroy all the motion
of the globe, while the globe is describing two thirds of this length, that is, eight third parts of its own
diameter. Now the resistance of the cylinder is to this force very nearly as the density of the fluid to the
density of the cylinder or globe (by Prop. XXXVII), and the resistance of the globe is equal to the resistance
of the cylinder (by Lem. V, VI, and VII). Q.E.D.

Cor. 1. The resistances of globes in infinite compressed mediums are in a ratio compounded of the
duplicate ratio of the velocity, and the duplicate ratio of the diameter, and the ratio of the density of the
mediums.

Cor. 2. The greatest velocity, with which a globe can descend by its comparative weight through a resisting
fluid, is the same which it may acquire by falling with the same weight, and without any resistance, and in its
fall describing a space that is, to four third parts of its diameter as the density of the globe to the density of
the fluid. For the globe in the time of its fall, moving with the velocity acquired in falling, will describe a
space that will be to eight third parts of its diameter as the density of the globe to the density of the fluid; and
the force of its weight which generates this motion will be to the force that can generate the same motion, in
the time that the globe describes eight third parts of its diameter, with the same velocity as the density of the
fluid to the density of the globe; and therefore (by this Proposition) the force of weight will be equal to the
force of resistance, and therefore cannot accelerate the globe.

Cor. 3. If there be given both the density of the globe and its velocity at the beginning of the motion, and
the density of the compressed quiescent fluid in which the globe moves, there is given at any time both the
velocity of the globe and its resistance, and the space described by it (by Cor. 7, Prop. XXXV).

Cor. 4. A globe moving in a compressed quiescent fluid of the same density with itself will lose half its
motion before it can describe the length of two of its diameters (by the same Cor. 7).

Proposition xxxix. Theorem xxxi.

If a globe move uniformly forward through a fluid inclosed and compressed in a cylindric canal, its
resistance is to the force by which its whole motion may be generated or destroyed, in the time in which it
describes eight third parts of its diameter, in a ratio compounded of the ratio of the orifice of the canal to
the excess of that orifice above half the greatest circle of the globe; and the duplicate ratio of the orifice of
the canal, to the excess of that orifice above the greatest circle of the globe; and the ratio of the density of
the fluid to the density of the globe, nearly. This appears by Cor. 2, Prop. XXXVII, and the demonstration

proceeds in the same manner as in the foregoing Proposition.

Scholium.

In the last two Propositions we suppose (as was done before in Lem. V) that all the water which precedes
the globe, and whose fluidity increases the resistance of the same, is congealed. Now if that water becomes
fluid, it will somewhat increase the resistance. But in these Propositions that increase is so small, that it may
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be neglected, because the convex superficies of the globe produces the very same effect almost as the
congelation of the water.

Proposition xI. Problem ix.

To find by phenomena the resistance of a globe moving through a perfectly fluid compressed medium.

Let A be the weight of the globe in vacuo, B its weight in the resisting medium, D the diameter of the
globe. F a space which is to 4/3D as the density of the globe to the density of the medium, that is, as A to A —
B, G the time in which the globe falling with the weight B without resistance describes the space F, and H the
velocity which the body acquires by that fall. Then H will be the greatest velocity with which the globe can
possibly descend with the weight B in the resisting medium, by Cor. 2, Prop XXXVIII; and the resistance
which the globe meets with, when descending with that velocity, will be equal to its weight B; and the
resistance it meets with in any other velocity will be to the weight B in the duplicate ratio of that velocity to
the greatest velocity H, by Cor. 1, Prop. XXXVIII.

This is the resistance that arises from the inactivity of the matter of the fluid. That resistance which arises
from the elasticity, tenacity, and friction of its parts, may be thus investigated.

Let the globe be let fall so that it may descend in the fluid by the weight B; and let P be the time of falling,

and let that time be expressed in seconds, if the time G be given in seconds. Find the absolute number N
2P N+1,
G’ N~

acquired in falling will be II:IT :L 1H, and the height described will be %T - 1,3862943611F + 4,605170186LF.

If the fluid be of a sufficient depth, we may neglect the term 4,605170186LF; an

agreeing to the logarithm 0,4342944819 and let L be the logarithm of the number and the velocity

d % -1,3862943611F will
be the altitude described, nearly. These things appear by Prop. IX, Book II, and its Corollaries, and are true
upon this supposition, that the globe meets with no other resistance but that which arises from the inactivity
of matter. Now if it really meet with any resistance of another kind, the descent will be slower, and from the

quantity of that retardation will be known the quantity of this new resistance.

That the velocity and descent of a body falling in a fluid might more easily be known, I have composed the
following table; the first column of which denotes the times of descent; the second shews the velocities
acquired in falling, the greatest velocity being 100000000: the third exhibits the spaces described by falling
in those times, 2F being the space which the body describes in the time G with the greatest velocity; and the

fourth gives the spaces described with the greatest velocity in the same times. The numbers in the fourth
2P
G b
column; and these numbers must be multiplied by the space F to obtain the spaces described in falling. A

column are and by subducting the number 1,3862944 - 4,6051702L, are found the numbers in the third

fifth column is added to all these, containing the spaces described in the same times by a body falling in
vacuo with the force of B its comparative weight.
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Velocities of The spaces | The spaces The spaces
The Times | the described | described with | described
P body falling in falling the greatest by falling
in the fluid in the fluid | motion In vacuo
0,001G 9999929/ 30 0,000001F 0,002F 0,000001F
0,01G 999967 0,0001F 0,02F 0,0001F
0,1G 9966799 0,0099834F | 0,2F 0,01F
0,2G 19737532 0,0397361F . 0,4F 0,04F
0,3G 20131261 0,0886815F | 0,6F 0,09F
0,4G 37994896 0,1559070F : 0,8F 0,16F
0,5G 46211716 0,2402290F | 1,0F 0,25F
0,6G 53704957 0,3402706F | 1,2F 0,36F
0,7G 60436778 0,4545405F  1,4F 0,49F
0,8G 66403677 0,5815071F | 1,6F 0,64F
0,9G 71629787 0,7196609F | 1,8F 0,81F
1G 76159416 0,8675617F @ 2F 1F
2G 96402758 2,6500055F | 4F 4F
3G 99505475 4,6186570F | 6F oF
4G 99932930 6,6143765F | 8F 16F
5G 99990920 8,6137964F @ 10F 25F
6G 99998771 10,6137179F | 12F 36F
7G 99999834 12,6137073F | 14F 49F
8G 99999980 14,6137059F | 16F 64F
9G 99999997 16,6137057F  18F 81F
10G 099999993/ 5 18,6137056F | 20F 100F

Scholium.

In order to investigate the resistances of fluids from experiments, I procured a square wooden vessel,
whose length and breadth on the inside was 9 inches English measure, and its depth 9 feet Y2; this I filled
with rainwater: and having provided globes made up of wax, and lead included therein, I noted the times of
the descents of these globes, the height through which they descended being 112 inches. A solid cubic foot of

English measure contains 76 pounds troy weight of rainwater; and a solid inch contains ;—2 ounces troy

weight, or 253%3 grains; and a globe of water of one inch in diameter contains 132,645 grains in air, or 132,8
grains in vacuo; and any other globe will be as the excess of its weight in vacuo above its weight in water.

Exper. 1. A globe whose weight was 156%4 grains in air, and 77 grains in water, described the whole height
of 112 inches in 4 seconds. And, upon repeating the experiment, the globe spent again the very same time of
4 seconds in falling.

The weight of this globe in vacuo is 156 ;—?é grains; and the excess of this weight above the weight of the

globe in water is 79 ;—?é grains. Hence the diameter of the globe appears to be 0,84224 parts of an inch. Then

it will be, as that excess to the weight of the globe in vacuo, so is the density of the water to the density of the
globe; and so is 8/ parts of the diameter of the globe (viz. 2,24597 inches) to the space 2F, which will be

therefore 4,4256 inches. Now a globe falling in vacuo with its whole weight of 156 ;—?é grains in one second of

time will describe 1935 inches; and falling in water in the same time with the weight of 77 grains without
resistance, will describe 95,219 inches; and in the time G, which is to one second of time in the subduplicate
ratio of the space F, or of 2,2128 inches to 95,219 inches, will describe 2,2128 inches, and will acquire the
greatest velocity H with which it is capable of descending in water. Therefore the time G is 0”.15244. And in
this time G, with that greatest velocity H, the globe will describe the space 2F, which is 4,4256 inches; and
therefore in 4 seconds will describe a space of 116,1245 inches. Subduct the space 1,3862944F, or 3,0676
inches, and there will remain a space of 113,0569 inches, which the globe falling through water in a very
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wide vessel will describe in 4 seconds. But this space, by reason of the narrowness of the wooden vessel
before mentioned, ought to be diminished in a ratio compounded of the subduplicate ratio of the orifice of
the vessel to the excess of this orifice above half a great circle of the globe, and of the simple ratio of the same
orifice to its excess above a great circle of the globe, that is, in a ratio of 1to 0,9914. This done, we have a
space of 112,08 inches, which a globe falling through the water in this wooden vessel in 4 seconds of time
ought nearly to describe by this theory; but it described 112 inches by the experiment.

Exper. 2. Three equal globes, whose weights were severally 76Y3 grains in air, and 51/,¢ grains in water,
were let fall successively; and every one fell through the water in 15 seconds of time, describing in its fall a
height of 112 inches.

By computation, the weight of each globe in vacuo is 76 152 grains; the excess of this weight above the

weight in water is 71 grains i_; ; the diameter of the globe 0,81296 of an inch; 8/5 parts of this diameter

2,16789 inches; the space 2F is 2,3217 inches; the space which a globe of 51/4¢ grains in weight would
describe in one second without resistance, 12,808 inches, and the time Go”,301056. Therefore the globe,
with the greatest velocity it is capable of receiving from a weight of 51/,6 grains in its descent through water,
will describe in the time 0”,301056 the space of 2,3217 inches; and in 15 seconds the space 115,678 inches.
Subduct the space 1,3862944F, or 1,609 indies, and there remains the space 114.069 inches, which therefore
the falling globe ought to describe in the same time, if the vessel were very wide. But because our vessel was
narrow, the space ought to be diminished by about 0,895 of an inch. And so the space will remain 113,174
inches, which a globe falling in this vessel ought nearly to de scribe in 15 seconds, by the theory. But by the
experiment it described 112 inches. The difference is not sensible.

Exper. 3. Three equal globes, whose weights were severally 121 grains in air, and 1 grain in water, were
successively let fall; and they fell through the water in the times 46”, 47”, and 50”, describing a height of 112
inches.

By the theory, these globes ought to have fallen in about 40”. Now whether their falling more slowly were
occasioned from hence, that in slow motions the resistance arising from the force of inactivity does really
bear a less proportion to the resistance arising from other causes; or whether it is to be attributed to little
bubbles that might chance to stick to the globes, or to the rarefaction of the wax by the warmth of the
weather, or of the hand that let them fall; or, lastly, whether it proceeded from some insensible errors in
weighing the globes in the water, I am not certain. Therefore the weight of the globe in water should be of
several grains, that the experiment may be certain, and to be depended on.

Exper. 4. I began the foregoing experiments to investigate the resistances of fluids, before I was acquainted
with the theory laid down in the Propositions immediately preceding. Afterward, in order to examine the
theory after it was discovered, I procured a wooden vessel, whose breadth on the inside was 8% inches, and

its depth 15 feet and 5. Then I made four globes of wax, with lead included, each of which weighed 139V4
1
8
pendulum oscillating to half seconds. The globes were cold, and had remained so some time, both when they

grains in air, and 7 = grains in water. These I let fall, measuring the times of their falling in the water with a

were weighed and when they were let fall; because warmth rarefies the wax, and by rarefying it diminishes
the weight of the globe in the water; and wax, when rarefied, is not instantly reduced by cold to its former
density. Before they were let fall, they were totally immersed under water, lest, by the weight of any part of
them that might chance to be above the water, their descent should be accelerated in its beginning. Then,
when after their immersion they were perfectly at rest, they were let go with the greatest care, that they
might not receive any impulse from the hand that let them down. And they fell successively in the times of
47Y2, 482, 50, and 51 oscillations, describing a height of 15 feet and 2 inches. But the weather was now a
little colder than when the globes were weighed, and therefore I repeated the experiment another day; and
then the globes fell in the times of 49; 49V2, 50. and 53; and at a third trial in the times of 49V2, 50, 51, and
53 oscillations. And by making the experiment several times over, I found that the globes fell mostly in the
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times of 49V2 and 50 oscillations. When they fell slower, I suspect them to have been retarded by striking
against the sides of the vessel.

Now, computing from the theory, the weight of the globe in vacuo is 139 % grains; the excess of this weight

above the weight of the globe in water 132 i—é grains; the diameter of the globe 0,09868 of an inch; 8/ parts

1
8
falling without resistance describes in a second of time 9,88164 inches; and the time GO”,376843. Therefore

of the diameter 2,66315 inches; the space 2F 2,8066 inches; the space which a globe weighing 7 = grains

the globe with the greatest velocity with which it is capable of descending through the water by the force of a
weight of 7 é grains, will in the time 0”,376843 describe a space of 2,8066 inches, and in one second of time

a space of 7,44766 inches, and in the time 25", or in 50 oscillations, the space 186,1915 inches. Subduct the
space 1,386294F, or 1,9454 inches, and there will remain the space 184,2461 inches which the globe will
describe in that time in a very wide vessel. Because our vessel was narrow, let this space be diminished in a
ratio compounded of the subduplicate ratio of the orifice of the vessel to the excess of this orifice above half a
great circle of the globe, and of the simple ratio of the same orifice to its excess above a great circle of the
globe; and we shall have the space of 181,86 inches, which the globe ought by the theory to describe in this
vessel in the time of 50 oscillations, nearly. But it described the space of 182 inches, by experiment, in 49%2
or 50 oscillations.

Exper. 5. Four globes weighing 1543/4 grains in air, and 21¥2 grains in water, being let fall several times,

fell in the times of 282, 29, 292, and 30, and sometimes of 31, 32, and 33 oscillations, describing a height
of 15 feet and 2 inches.

They ought by the theory to have fallen in the time of 29 oscillations, nearly.

Exper. 6. Five globes, weighing 212 33 grains in air, and 79%2 in water, being several times let fall, fell in
the times of 15, 15%2, 16, 17, and 18 oscillations, describing a height of 15 feet and 2 inches.

By the theory they ought to have fallen in the time of 15 oscillations, nearly.

Exper. 7. Four globes, weighing 2933/ grains in air, and 35 7/ grains in water, being let fall several times,

fell in the times of 292, 30, 30V2, 31, 32, and 33 oscillations, describing a height of 15 feet and 1 inch and
o,

By the theory they ought to have fallen in the time of 28 oscillations, nearly.

In searching for the cause that occasioned these globes of the same weight and magnitude to fall, some
swifter and some slower, I hit upon this; that the globes, when they were first let go and began to fall,
oscillated about their centres; that side which chanced to be the heavier descending first, and producing an
oscillating motion. Now by oscillating thus, the globe communicates a greater motion to the water than if it
descended without any oscillations; and by this communication loses part of its own motion with which it
should descend; and therefore as this oscillation is greater or less, it will be more or less retarded. Besides,
the globe always recedes from that side of itself which is descending in the oscillation, and by so receding
comes nearer to the sides of the vessel, so as even to strike against them sometimes. And the heavier the
globes are, the stronger this oscillation is; and the greater they are, the more is the water agitated by it.
Therefore to diminish this oscillation of the globes, I made new ones of lead and wax, sticking the lead in one
side of the globe very near its surface; and I let fall the globe in such a manner, that, as near as possible, the
heavier side might be lowest at the beginning of the descent. By this means the oscillations became much
less than before, and the times in which the globes fell were not so unequal: as in the following experiments.

Exper. 8. Four globes weighing 139 grains in air, and 6Y2 in water, were let fall several times, and fell
mostly in the time of 51 oscillations, never in more than 52, or in fewer than 50, describing a height of 182
inches.
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By the theory they ought to fall in about the time of 52 oscillations

Exper. 9. Four globes weighing 273V4 grains in air, and 14034 in water, being several times let fall, fell in
never fewer than 12, and never more than 13 oscillations, describing a height of 182 inches.

These globes by the theory ought to have fallen in the time of 11%5 oscillations, nearly.

Exper. 10. Four globes, weighing 384 grains in air, and 119%2 in water, being let fall several times, fell in
the times of 1734 18, 18Y2, and 19 oscillations, describing a height of 181%2 inches. And when they fell in the
time of 19 oscillations, I sometimes heard them hit against the sides of the vessel before they reached the
bottom.

By the theory they ought to have fallen in the time of 155/ oscillations, nearly.

Exper. 11. Three equal globes, weighing 48 grains in the air, and 3 % in water, being several times let fall,

fell in the times of 43V2, 44, 44Y2, 45, and 46 oscillations, and mostly in 44 and 45, describing a height of
182142 inches, nearly.

By the theory they ought to have fallen in the time of 46 oscillations ands/ ,, nearly.

Exper. 12. Three equal globes, weighing 141 grains in air, and 43/4 in water, being let fall several times, fell

in the times of 61, 62, 63, 64, and 65 oscillations, describing a space of 182 inches.
And by the theory they ought to have fallen in 64V2 oscillations nearly.

From these experiments it is manifest, that when the globes fell slowly, as in the second, fourth, fifth,
eighth, eleventh, and twelfth experiments, the times of falling are rightly exhibited by the theory; but when
the globes fell more swiftly, as in the sixth, ninth, and tenth experiments, the resistance was somewhat
greater than in the duplicate ratio of the velocity. For the globes in falling oscillate alittle; and this
oscillation, in those globes that are light and fall slowly, soon ceases by the weakness of the motion; but in
greater and heavier globes, the motion being strong, it continues longer, and is not to be checked by the
ambient water till after several oscillations. Besides, the more swiftly the globes move, the less are they
pressed by the fluid at their hinder parts; and if the velocity be perpetually increased, they will at last leave
an empty space behind them, unless the compression of the fluid be increased at the same time. For the
compression of the fluid ought to be increased (by Prop. XXXII and XXXIII) in the duplicate ratio of the
velocity, in order to preserve the resistance in the same duplicate ratio. But because this is not done, the
globes that move swiftly are not so much pressed at their hinder parts as the others; and by the defect of this
pressure it comes to pass that their resistance is a little greater than in a duplicate ratio of their velocity.

So that the theory agrees with the phaenomena of bodies falling in water. It remains that we examine the
phaenomena of bodies falling in air.

Exper. 13. From the top of St. Paul's Church in London, in June 1710, there were let fall together two glass
globes, one full of quicksilver, the other of air; and in their fall they described a height of 220 English feet. A
wooden table was suspended upon iron hinges on one side, and the other side of the same was supported by
a wooden pin. The two globes lying upon this table were let fall together by pulling out the pin by means of
an iron wire reaching from thence quite down to the ground; so that, the pin being removed, the table, which
had then no support but the iron hinges, fell downward, and turning round upon the hinges, gave leave to
the globes to drop off from it. At the same instant, with the same pull of the iron wire that took out the pin, a
pendulum oscillating to seconds was let go, and began to oscillate. The diameters and weights of the globes,
and their times of falling, are exhibited in the following table.
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The globes filled with mercury The globes full of air
. . Times in . . Times in
Weights | Diameters falling Weights | Diameters falling
908 grains | 0,8 ofaninch | 4” 510 grains | 5,1 inches 8”12
983 grains | 0,8 ofaninch  4- 642 grains : 5,2 inches 8
866 grains : 0,8 ofaninch ' 4 599 grains | 5,1 inches 8
747 grains | 0,75 of aninch : 4+ 515 grains 5,0 inches 814
808 grains | 0,75 of aninch ' 4 483 grains | 5,0 inches 81~
784 grains | 0,75 of aninch : 4+ 641 grains : 5,2 inches 8

But the times observed must be corrected; for the globes of mercury (by Galileo's theory), in 4 seconds of
time, will describe 257 English feet, and 220 feet in only 3”7 42”. So that the wooden table, when the pin was
taken out, did not turn upon its hinges so quickly as it ought to have done; and the slowness of that
revolution hindered the descent of the globes at the beginning. For the globes lay about the middle of the
table, and indeed were rather nearer to the axis upon which it turned than to the pin. And hence the times of
falling were prolonged about 18”; and therefore ought to be corrected by subducting that excess, especially
in the larger globes, which, by reason of the largeness of their diameters, lay longer upon the revolving table
than the others. This being done, the times in which the six larger globes fell will come forth 8” 127, 7” 427,
2" 42" 7" 57" 87 12" and 7" 42"

Therefore the fifth in order among the globes that were full of air being 5 inches in diameter, and 483

grains in weight, fell in 8” 12", describing a space of 220 feet. The weight of a bulk of water equal to this

16600
860

the weight of the globe in vacua is 5023/, grains; and this weight is to the weight of a bulk of air equal to the

globe is 16600 grains; and the weight of an equal bulk of air is grains, or 193/, grains; and therefore

globe as 5023/, t0 193/,,; and so is 2F to 8/5 of the diameter of the globe, that is, to 13%5 inches. Whence 2F
becomes 28 feet 11 inches. A globe, falling in vacua with its whole weight of 5023/,, grains, will in one

second of time describe 193% inches as above; and with the weight of 483 grains will describe 185,905
inches; and with that weight 483 grains in vacua will describe the space F, or 14 feet 5Y2 inches, in the time
of 577 58””, and acquire the greatest velocity it is capable of descending with in the air. With this velocity the
globe in 8” 12" of time will describe 245 feet and 5% inches. Subduct 1,3863F, or 20 feet and %2 an inch,
and there remain 225 feet 5 inches. This space, therefore, the falling globe ought by the theory to describe in
8” 12”. But by the experiment it described a space of 220 feet. The difference is insensible.

By like calculations applied to the other globes full of air, I composed the following table.

The weights Th The times falling | The spaces which

e . . The
of the diameters from a height they would describe eXCESSES
globe of 220 feet by the theory
510 grains 5,1 inches 8" 12" 226 feet 11 inch. 6 feet 11 inch
642 grains 5,21inches | 7”7 42" 230 feet 9 inch. 10 feet 9 inch
599 grains 5,1 inches 7" 42" 227 feet 10 inch. 7 feet 0 inch
515 grains 5 inches 7" 57" 224 feet 5 inch. 4 feet 5 inch
483 grains 5 inches 8" 12" 225 feet 5 inch 5 feet 5 inch
641 grains 5,2inches | 7”7 42" 230 feet 7 inch. 10 feet 7 inch

Exper. 14. Anno 1719, in the month of July, Dr. Desaguliers made some experiments of this kind again, by
forming hogs' bladders into spherical orbs; which was done by means of a concave wooden sphere, which the
bladders, being wetted well first, were put into. After that being blown full of air, they were obliged to fill up
the spherical cavity that contained them; and then, when dry, were taken out. These were let fall from the
lantern on the top of the cupola of the same church, namely, from a height of 272 feet; and at the same
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moment of time there was let fall a leaden globe, whose weight was about 2 pounds troy weight. And in the
mean time some persons standing in the upper part of the church where the globes were let fall observed the
whole times of falling; and others standing on the ground observed the differences of the times between the
fall of the leaden weight and the fall of the bladder. The times were measured by pendulums oscillating to
half seconds. And one of those that stood upon the ground had a machine vibrating four times in one second;
and another had another machine accurately made with a pendulum vibrating four times in a second also.
One of those also who stood at the top of the church had a like machine; and these instruments were so
contrived, that their motions could be stopped or renewed at pleasure. Now the leaden globe fell in about
four seconds and V4 of time; and from the addition of this time to the difference of time above spoken of,
was collected the whole time in which the bladder was falling. The times which the five bladders spent in
falling, after the leaden globe had reached the ground, were, the first time, 1434”, 1234", 145/4”,17%4", and

167/4"”; and the second time, 14Y2",14V4", 14", 19”, and 1634”. Add to these 4%4”, the time in which the

leaden globe was falling, and the whole times in which the five bladders fell were, the first time, 19”7, 17",
187/4", 22", and 211/4”; and the second time, 1834”, 182", 184", 23%4”, and 21”. The times observed at the

top of the church were, the first time, 193/g”, 174", 1834”, 221/4” and 215/g”; and the second time, 19”,
185/g",183/3", 24", and 21%4”. But the bladders did not always fall directly down, but sometimes fluttered a

little in the air, and waved to and fro, as they were descending. And by these motions the times of their
falling were prolonged, and increased by half a second sometimes, and sometimes by a whole second. The
second and fourth bladder fell most directly the first time, and the first and third the second time. The fifth
bladder was wrinkled, and by its wrinkles was a little retarded. I found their diameters by their
circumferences measured with a very fine thread wound about them twice. In the following table I have
compared the experiments with the theory; making the density of air to be to the density of rain-water as 1 to
860, and computing the spaces which by the theory the globes ought to describe in falling.

The weight The tlfnes The spaces which by The difference
The of falling the theory ought to

of the . . . between the theory
diameters | from a height | have been described -

bladders . . and the experiments

of 272 feet in those times

128 grains 5,28 inches | 19” 271 feet 11 in. -oft1in.

156 grains 5,19 inches | 17” 272 feet 0%/2 in. + o ft oV2 in.

137Y2 grains | 5,3 inches 18” 272 feet 7 in. +oft7in.

97Y2 grains | 5,26 inches | 22” 277 feet 4 in. + 5 ft 4 in.

991/g grains : 5 inches 211/g” 282 feet 0 in. + 10 ftoin.

Our theory, therefore, exhibits rightly, within a very little, all the resistance that globes moving either in
air or in water meet with; which appears to be proportional to the densities of the fluids in globes of equal
velocities and magnitudes.

In the Scholium subjoined to the sixth Section, we shewed, by experiments of pendulums, that the
resistances of equal and equally swift globes moving in air, water, and quicksilver, are as the densities of the
fluids. We here prove the same more accurately by experiments of bodies falling in air and water. For
pendulums at each oscillation excite a motion in the fluid always contrary to the motion of the pendulum in
its return; and the resistance arising from this motion, as also the resistance of the thread by which the
pendulum is suspended, makes the whole resistance of a pendulum greater than the resistance deduced from
the experiments of falling bodies. For by the experiments of pendulums described in that Scholium, a globe

of the same density as water in describing the length of its semidiameter in air would lose the 3314 5 part of its
motion. But by the theory delivered in this seventh Section, and confirmed by experiments of falling bodies,

the same globe in describing the same length would lose only a part of its motion equal to supposing

1
4586’
the density of water to be to the density of air as 860 to 1. Therefore the resistances were found greater by
the experiments of pendulums (for the reasons just mentioned) than by the experiments of falling globes;
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and that in the ratio of about 4 to 3. Bat yet since the resistances of pendulums oscillating in air, water, and
quicksilver, are alike increased by like causes, the proportion of the resistances in these mediums will be
rightly enough exhibited by the experiments of pendulums, as well as by the experiments of falling bodies.
And from all this it may be concluded, that the resistances of bodies, moving in any fluids whatsoever,
though of the most extreme fluidity, are, caeteris paribus, as the densities of the fluids.

These things being thus established, we may now determine what part of its motion any globe projected in
any fluid whatsoever would nearly lose in a given time. Let D be the diameter of the globe, and V its velocity
at the beginning of its motion, and T the time in which a globe with the velocity V can describe in vacuo a

space that is, to the space 8/3D as the density of the globe to the density of the fluid; and the globe projected

tv vV o : :
T+t the part T+¢ Femaining; and will describe a space,

which will be to that described in the same time in vacuo with the uniform velocity V, as the logarithm of the

number L+t multiplied by the number 2,302585093 is to the number E, by Cor. 7, Prop. XXXV. In slow

T
motions the resistance may be a little less, because the figure of a globe is more adapted to motion than the

in that fluid will, in any other time t lose the part

figure of a cylinder described with the same diameter. In swift motions the resistance may be a little greater,
because the elasticity and compression of the fluid do not increase in the duplicate ratio of the velocity. But
these little niceties I take no notice of.

And though air, water, quicksilver, and the like fluids, by the division of their parts in infinitum, should be
subtilized, and become mediums infinitely fluid, nevertheless, the resistance they would make to projected
globes would be the same. For the resistance considered in the preceding Propositions arises from the
inactivity of the matter; and the inactivity of matter is essential to bodies, and always proportional to the
quantity of matter. By the division of the parts of the fluid the resistance arising from the tenacity and
friction of the parts may be indeed diminished; but the quantity of matter will not be at all diminished by
this division; and if the quantity of matter be the same, its force of inactivity will be the same; and therefore
the resistance here spoken of will be the same, as being always proportional to that force. To diminish this
resistance, the quantity of matter in the spaces through which the bodies move must be diminished; and
therefore the celestial spaces, through which the globes of the planets and comets are perpetually passing
towards all parts, with the utmost freedom, and without the least sensible diminution of their motion, must
be utterly void of any corporeal fluid, excepting, perhaps, some extremely rare vapours and the rays of light.

Projectiles excite a motion in fluids as they pass through them, and this motion arises from the excess of
the pressure of the fluid at the fore parts of the projectile above the pressure of the same at the hinder parts;
and cannot be less in mediums infinitely fluid than it is in air, water, and quicksilver, in proportion to the
density of matter in each. Now this excess of pressure does, in proportion to its quantity, not only excite a
motion in the fluid, but also acts upon the projectile so as to retard its motion; and therefore the resistance in
every fluid is as the motion excited by the projectile in the fluid; and cannot be less in the most subtile aether
in proportion to the density of that aether, than it isin air, water, and quicksilver, in proportion to the
densities of those fluids.
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The Mathematical Principles of Natural Philosophy

by Isaac Newton

Book 2.8
SECTION VIII.

Of motion propagated through fluids.

Proposition xli. Theorem xxxii.

A pressure is not propagated through a fluid in rectilinear directions unless where the particles of the fluid
lie in a right line.

If the particles a, b, ¢, d, e, lie in a right line, the pressure may be indeed directly
propagated from a to e; but then the particle e will urge the obliquely posited particles f
and g obliquely, and those particles fand g will not sustain this pressure, unless they be
supported by the particlesh and k lying beyond them; but the particles that support
them are also pressed by them; and those particles cannot sustain that pressure, without

being supported by, and pressing upon, those particles that lie still farther, as [ and m,
and so on in infinitum. Therefore the pressure, as soon as it is propagated to particles that lie out of right
lines, begins to deflect towards one hand and the other, and will be propagated obliquely in infinitum; and
after it has begun to be propagated obliquely, if it reaches more distant particles lying out of the right line, it
will deflect again on each hand and this it will do as often as it lights on particles that do not lie exactly in a
right line. Q.E.D.

Cor. If any part of a pressure, propagated through a fluid from a given point, be intercepted by any
obstacle, the remaining part, which is not intercepted, will deflect into the spaces behind the obstacle. This
may be demonstrated also after the following manner. Let a pressure be propagated from the point A
towards any part, and, if it be possible, in rectilinear
directions; and the obstacle NBCK being perforated in
BC, let all the pressure be intercepted but the coniform
part APQ passing through the circular hole BC. Let the
cone APQ be divided into frustums by the transverse
plants, de, fg, hi. Then while the cone ABC, propagating
the pressure, urges the conic frustum degf beyond it on
the superficiesde, and this frustum urges the next
frustum fgih on the superficies fg, and that frustum urges
a third frustum, and so in infinitum; it is manifest (by the
third Law) that the first frustum defg is, by the re-action
of the second frustum fght, as much urged and pressed
on the superficies fg, as it urges and presses that second frustum. Therefore the frustum degf is compressed
on both sides, that is, between the cone Ade and the frustum fhig; and therefore (by Case 6, Prop. XIX)
cannot preserve its figure, unless it be compressed with the same force on all sides. Therefore with the same

force with which it is pressed on the superficies de, fg, it will endeavour to break forth at the sides df, eg; and
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there (being not in the least tenacious or hard, but perfectly fluid) it will run out, expanding itself, unless
there be an ambient fluid opposing that endeavour. Therefore, by the effort it makes to run out, it will press
the ambient fluid, at its sides df, eg, with the same force that it does the frustum fght; and therefore, the
pressure will be propagated as much from the sides df, eg, into the spaces NO, KL this way and that way, as
it is propagated from the superficies fg towards PQ. Q.E.D.

Proposition xlii. Theorem xxxiii.

All motion propagated through a fluid diverges from a rectilinear progress into the unmoved spaces.

Case 1. Let a motion be propagated from the point A
through the hole BC, and, if it be possible, let it proceed in
the conic space BCQP according to right lines diverging
from the point A. And let us first suppose this motion to be
that of waves in the surface of standing water; and let de,
fg, hi, kl, &c., be the tops of the several waves, divided from
each other by as many intermediate valleys or hollows.
Then, because the water in the ridges of the waves is higher
than in the unmoved parts of the fluid KL, NO, it will run
down from off the tops of those ridges, e, g, i, [, &c., d, f, h,
k, &c.,this way and that way towards KL and NO; and
because the water is more depressed in the hollows of the
waves than in the unmoved parts of the fluid KL, NO, it will run down into those hollows out of those

unmoved parts. By the first deflux the ridges of the waves will dilate themselves this way and that way, and
be propagated towards KL and NO. And because the motion of the waves from A towards PQ is carried on by
a continual deflux from the ridges of the waves into the hollows next to them, and therefore cannot be swifter
than in proportion to the celerity of the descent; and the descent of the water on each side towards KL and
NO must be performed with the same velocity; it follows that the dilatation of the waves on each side
towards KL and NO will be propagated with the same velocity as the waves themselves go forward with
directly from A to PQ. And therefore the whole space this way and that way towards KL and NO will be filled
by the dilated waves rfgr, shis, tklt, vmnv, &c. Q.E.D. That these things are so, any one may find by
making the experiment in still water.

Case 2. Let us suppose that de, fg, hi, kI, mn, represent pulses successively propagated from the point A
through an elastic medium. Conceive the pulses to be propagated by successive condensations and
rarefactions of the medium, so that the densest part of every pulse may occupy a spherical superficies
described about the centre A, and that equal intervals intervene between the successive pulses. Let the lines
de, fg, hi, kl, &c., represent the densest parts of the pulses, propagated through the hole BC; and because the
medium is denser there than in the spaces on either side towards KL and NO, it will dilate itself as well
towards those spaces KL, NO, on each hand, as towards the rare intervals between the pulses; and thence the
medium, becoming always more rare next the intervals, and more dense next the pulses, will partake of their
motion. And because the progressive motion of the pulses arises from the perpetual relaxation of the denser
parts towards the antecedent rare intervals; and since the pulses will relax themselves on each hand towards
the quiescent parts of the medium KL, NO, with very near the same celerity; therefore the pulses will dilate
themselves on all sides into the unmoved parts KL, NO, with almost the same celerity with which they are
propagated directly from the centre A; and therefore will fill up the whole space KLON. Q.E.D. And we find
the same by experience also in sounds which are heard through a mountain interposed; and, if they come
into a chamber through the window, dilate themselves into all the parts of the room, and are heard in every
corner; and not as reflected from the opposite walls, but directly propagated from the window, as far as our
sense can judge.
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Case 3 Let us suppose, lastly, that a motion of any kind is propagated from A through the hole BC. Then
since the cause of this propagation is that the parts of the medium that are near the centre A disturb and
agitate those which lie farther from it; and since the parts which are urged are fluid, and therefore recede
every way towards those spaces where they are less pressed, they will by consequence recede towards all the
parts of the quiescent medium; as well to the parts on each hand, as KL and NO, as to those right before, as
PQ; and by this means all the motion, as soon as it has passed through the hole BC, will begin to dilate itself,
and from thence, as from its principle and centre, will be propagated directly every way. Q.E.D.

Proposition xliii. Theorem xxxiv.

Every tremulous body in an elastic medium propagates the motion of the pulses on every side right
forward; but in a non-elastic medium excites a circular motion.

Case. 1. The parts of the tremulous body, alternately going and returning, do in going urge and drive
before them those parts of the medium that lie nearest, and by that impulse compress and condense them;
and in returning suffer those compressed parts to recede again, and expand themselves. Therefore the parts
of the medium that lie nearest to the tremulous body move to and fro by turns, in like manner as the parts of
the tremulous body itself do; and for the same cause that the parts of this body agitate these parts of the
medium, these parts, being agitated by like tremors, will in their turn agitate others next to themselves; and
these others, agitated in like manner, will agitate those that lie beyond them, and so on in infinitum. And in
the same manner as the first parts of the medium were condensed in going, and relaxed in returning, so will
the other parts be condensed every time they go, and expand themselves every time they re turn. And
therefore they will not be all going and all returning at the same instant (for in that case they would always
preserve determined distances from each other, and there could be no alternate condensation and
rarefaction); but since, in the places where they are condensed, they approach to, and, in the places where
they are rarefied, recede from each other, therefore some of them will be going while others are returning;
and so onin infinitum. The parts so going, and in their going condensed, are pulses, by reason of the
progressive motion with which they strike obstacles in their way; and therefore the successive pulses
produced by a tremulous body will be propagated in rectilinear directions; and that at nearly equal distances
from each other, because of the equal intervals of time in which the body, by its several tremors produces the
several pulses. And though the parts of the tremulous body go and return in some certain and determinate
direction, yet the pulses propagated from thence through the medium will dilate themselves towards the
sides, by the foregoing Proposition; and will be propagated on all sides from that tremulous body, as from a
common centre, in superficies nearly spherical and concentrical. An example of this we have in waves
excited by shaking a finger in water, which proceed not only forward and backward agreeably to the motion
of the finger, but spread themselves in the manner of concentrical circles all round the finger, and are
propagated on every side. For the gravity of the water supplies the place of elastic force.

Case 2. If the medium be not elastic, then, because its parts cannot be condensed by the pressure arising
from the vibrating parts of the tremulous body, the motion will be propagated in an instant towards the parts
where the medium yields most easily, that is, to the parts which the tremulous body would otherwise leave
vacuous behind it. The case is the same with that of a body projected in any medium whatever. A medium
yielding to projectiles does not recede in infinitum, but with a circular motion comes round to the spaces
which the body leaves behind it. Therefore as often as a tremulous body tends to any part, the medium
yielding to it comes round in a circle to the parts which the body leaves; and as often as the body returns to
the first place, the medium will be driven from the place it came round to, and return to its original place.
And though the tremulous body be not firm and hard, but every way flexible, yet if it continue of a given
magnitude, since it cannot impel the medium by its tremors any where without yielding to it somewhere else,
the medium receding from the parts of the body where it is pressed will always come round in a circle to the
parts that yield to it. Q.E.D.
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Cor. It is a mistake, therefore, to think, as some have done, that the agitation of the parts of flame
conduces to the propagation of a pressure in rectilinear directions through an ambient medium. A pressure
of that kind must be derived not from the agitation only of the parts of flame, but from the dilatation of the
whole.

Proposition xliv. Theorem xxxv.

If water ascend and descend alternately in the erected legs KL, MN, of a canal or pipe; and a pendulum be
constructed whose length between the point of suspension and the centre of oscillation is equal to half the
length of the water in the canal; I say, that the water will ascend and descend in the same times in which

the pendulum oscillates.

I measure the length of the water along the axes of the canal and its legs, and make it equal to the sum of
those axes; and take no notice of the resistance of the water arising from its attrition by the sides of the
canal. Let, therefore, AB, CD, represent the mean height of the water in both legs; and when the water in the
leg KL ascends to the height EF, the water will descend in the leg MN to the height GH. Let P be a pendulous
body, VP the thread, V the point of suspension, RPQS the cycloid which the pendulum describes, P its lowest

v K M
] E P
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point, P(lQ an arc equal to the height AE. The force with which the motion of the water is accelerated and
retarded alternately is the excess of the weight of the water in one leg above the weight in the other; and,
therefore, when the water in the leg KL ascends to EF, and in the other leg descends to GH, that force is
double the weight of the water EABF, and therefore is to the weight of the whole water as AE or PQ to VP or
PR. The force also with which the body P is accelerated or retarded in any place, as Q, of a cycloid, is (by Cor.
Prop. LI) to its whole weight as its distance PQ from the lowest place P to the length PR of the cycloid.
Therefore the motive forces of the water and pendulum, describing the equal spaces AE, PQ, are as the
weights to be moved; and therefore if the water and pendulum are quiescent at first, those forces will move
them in equal times, and will cause them to go and return together with a reciprocal motion. Q.E.D.

Cor. 1. Therefore the reciprocations of the water in ascending and descending are all performed in equal
times, whether the motion be more or less intense or remiss.

Cor. 2. If the length of the whole water in the canal be of 6 é feet of French measure, the water will

descend in one second of time, and will ascend in another second, and so on by turns in infinitum; for a
1

8 such feet in length will oscillate in one second of time.

pendulum of 3

Cor. 3. But if the length of the water be increased or diminished, the time of the reciprocation will be
increased or diminished in the subduplicate ratio of the length.

Proposition xlv. Theorem xxxvi.

The velocity of waves is in the subduplicate ratio of the breadths.
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This follows from the construction of the following Proposition.

Proposition xlvi. Problem X.

To find the velocity of waves.

Let a pendulum be constructed, whose length between the point of suspension and the centre of oscillation
is equal to the breadth of the waves and in the time that the pendulum will perform one single oscillation the
waves will advance forward nearly a space equal to their breadth.

That which I call the breadth of the waves is the transverse measure lying between the deepest part of the
hollows, or the tops of the ridges. Let ABCDEF represent the surface of stagnant water ascending and

C A
_— . .F'_\ - P
< \T)/f—\ e A

B

descending in successive waves; and let A, C, E, &c., be the tops of the waves; and let B, D, F, &c., be the
intermediate hollows. Because the motion of the waves is carried on by the successive ascent and descent of
the water, so that the parts thereof, as A, C, E, &c., which are highest at one time become lowest immediately
after; and because the motive force, by which the highest parts descend and the lowest ascend, is the weight
of the elevated water, that alternate ascent and descent will be analogous to the reciprocal motion of the
water in the canal, and observe the same laws as to the times of its ascent and descent; and therefore (by
Prop. XLIV) if the distances between the highest places of the waves A, C, E, and the lowest B, D, F, be equal
to twice the length of any pendulum, the highest parts A, C, E, will become the lowest in the time of one
oscillation, and in the time of another oscillation will ascend again. Therefore between the passage of each
wave, the time of two oscillations will intervene; that is, the wave will describe its breadth in the time that
pendulum will oscillate twice; but a pendulum of four times that length, and which therefore is equal to the
breadth of the waves, will just oscillate once in that time. Q.E.IL.

1
18
their breadth in one second of time; and therefore in one minute will go over a space of 183% feet; and in an

Cor. 1. Therefore waves, whose breadth is equal to 3 =, French feet, will advance through a space equal to

hour a space of 11000 feet, nearly.

Cor. 2. And the velocity of greater or less waves will be augmented or diminished in the subduplicate ratio
of their breadth.

These things are true upon the supposition that the parts of water ascend or descend in a right line; but, in
truth, that ascent and descent is rather performed in a circle; and therefore I propose the time defined by
this Proposition as only near the truth.

Proposition xlvii. Theorem xxxvii.

If pulses are propagated through a fluid, the several particles of the fluid, going and returning with the
shortest reciprocal motion, are always accelerated or retarded according to the law of the oscillating
pendulum.

Let AB, BC, CD, &c., represent equal distances of successive pulses, ABC the line of direction of the motion
of the successive pulses propagated from A to B; E, F, G three physical points of the quiescent medium
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situate in the right line AC at equal distances from each other; Ee, Ff, Gg, equal spaces of -
extreme shortness, through which those points go and return with a reciprocal motion in ' I‘h'lllllb
i

i

eachvibration; e, @, y, any intermediate places of the same points; EF, FG physical
lineolae, or linear parts of the medium lying between those points, and successively
transferred into the places e®, @y, and ef, fg. Let there be drawn the right line PS equal to
the right line Ee. Bisect the same in O, and from the centre O, with the interval OP,
describe the circle SIPi. Let the whole time of one vibration; with its proportional parts, be -
expounded by the whole circumference of this circle and its parts, in such sort, that, when

any time PH or PHSh is completed, if there be let fall to PS the

perpendicular HL or hl, and there be taken Ee equal to PL or PI, the

physical point E may be found in &. A point, as E, moving according ' .
to this law with a reciprocal motion, in its going from E through ¢ to |M[|‘l|‘|!¢¢llw’lll’l’|
e, and returning again through e to E, will perform its several i‘E I |
several physical points of the medium will be agitated with such a kind of motion. Let us

vibrations with the same degrees of acceleration and retardation

with those of an oscillating pendulum. We are now to prove that the

. n'lﬁ'\ﬁ

suppose, then, that a medium hath such a motion excited in it from any cause whatsoever,
and consider what will follow from thence.

o P

In the circumference PHSh let there be taken the equal arcs, HI, IK, or hi, ik, having the

]

same ratio to the whole circumference as the equal right lines EF, FG have to BC, the whole 1
interval of the pulses. Let fall the perpendiculars IM, KN, orim, kn; then because the ,"illlrll mw

points E, F, G are successively agitated with like motions, and perform their entire

vibrations composed of their going and return, while the pulse is transferred from B to C; if
PH or PHSh be the time elapsed since the beginning of the motion of the point E, then will
PI or PHSI be the time elapsed since the beginning of the motion of the point F, and PK or
PHSk the time elapsed since the beginning of the motion of the point G; and therefore Ee,
F®, Gy, will be respectively equal to PL, PM, PN, while the points are going, and to PI, Pm,
Pn, when the points are returning. Therefore €y or EG + Gy — Ee will, when the points are
going, be equal to EG — LN and in their return equal to EG + In. But gy is the breadth or

expansion of the part EG of the medium in the place ey; and therefore the expansion of |y: ’

that part in its going is to its mean expansion as EG — LN to EG; and in its return, as EG +
In or EG + LN to EG. Therefore since LN is to KH as IM to the radius OP, and KH to EG as
the circumference PHShP to BC; that is, if we putV for the radius of a circle whose
circumference is equal to BC the interval of the pulses, as OP to V; and, ex aequo, LN to EG as IM to V; the
expansion of the part EG, or of the physical point F in the place ¢y, to the mean expansion of the same part in
its first place EG, will be as V — IM to V in going, and as V + im to V in its return. Hence the elastic force of

1 1. . 1
V_IM to yin its going, and V+im

in its return. And by the same reasoning the elastic forces of the physical points E and G in going are as

the point P in the place ey to its mean elastic force in the place EG is as

1

tOV

V- HL andV_ KN to Vv and the difference of the forces to the mean elastic force of the medium as

HL — KN 1. . HL - KN 1 _ b §
VV - VxHL-Vx KN+ HLx KN toV, that is, O A toV, or as HL — KN to V; if we suppose (by

reason of the very short extent of the vibrations) HL and KN to be indefinitely less than the quantity V.
Therefore since the quantity V is given, the difference of the forces is as HL — KN; that is (because HL. — KN
is proportional to HK, and OM to OI or OP; and because HK and OP are given) as OM; that is, if Ff be
bisected in Q, as Q@. And for the same reason the difference of the elastic forces of the physical points € and

y, in the return of the physical lineola ey, is as Q@. But that difference (that is, the excess of the elastic force
of the point € above the elastic force of the point y) is the very force by which the intervening physical lineola
ey of the medium is accelerated in going, and retarded in returning; and therefore the accelerative force of
the physical lineola ey is as its distance from Q, the middle place of the vibration. Therefore (by Prop.

220/296



XXXVIII, Book I) the time is rightly expounded by the arc PI; and the linear part of the medium ey is moved
according to the law abovementioned, that is, according to the law of a pendulum oscillating; and the case is
the same of all the linear parts of which the whole medium is compounded. Q.E.D.

Cor. Hence it appears that the number of the pulses propagated is the same with the number of the
vibrations of the tremulous body, and is not multiplied in their progress. For the physical lineola ey as soon
as it returns to its first place is at rest; neither will it move again, unless it receives a new motion either from
the impulse of the tremulous body, or of the pulses propagated from that body. As soon, therefore, as the
pulses cease to be propagated from the tremulous body, it will return to a state of rest, and move no more.

Proposition xlviii. Theorem xxxviii.

The velocities of pulses propagated in an elastic fluid are in a ratio compounded of the subduplicate ratio of
the elastic force directly, and the subduplicate ratio of the density inversely; supposing the elastic force of
the fluid to be proportional to its condensation.

Case 1. If the mediums be homogeneous, and the distances of the pulses in those mediums be equal
amongst themselves, but the motion in one medium is more intense than in the other, the contractions and
dilatations of the correspondent parts will be as those motions; not that this proportion is perfectly accurate.
However, if the contractions and dilatations are not exceedingly intense, the error will not be sensible; and
therefore this proportion may be considered as physically exact. Now the motive elastic forces are as the
contractions and dilatations; and the velocities generated in the same time in equal parts are as the forces.
Therefore equal and corresponding parts of corresponding pulses will go and return together, through
spaces proportional totheir contractions and dilatations, with velocities that are as those spaces; and
therefore the pulses, which in the time of one going and returning advance forward a space equal to their
breadth, and are always succeeding into the places of the pulses that immediately go before them, will, by
reason of the equality of the distances, go forward in both mediums with equal velocity.

Case 2. If the distances of the pulses or their lengths are greater in one medium than in another, let us
suppose that the correspondent parts describe spaces, in going and returning, each time proportional to the
breadths of the pulses; then will their contractions and dilatations be equal: and therefore if the mediums
are homogeneous, the motive elastic forces, which agitate them with a reciprocal motion, will be equal also.
Now the matter to be moved by these forces is as the breadth of the pulses; and the space through which they
move every time they go and return is in the same ratio. And, moreover, the time of one going and returning
is in a ratio compounded of the subduplicate ratio of the matter, and the subduplicate ratio of the space; and
therefore is as the space. But the pulses advance a space equal to their breadths in the times of going once
and returning once; that is, they go over spaces proportional to the times, and therefore are equally swift.

Case 3. And therefore in mediums of equal density and elastic force, all the pulses are equally swift. Now if
the density or the elastic force of the medium were augmented, then, because the motive force is increased in
the ratio of the elastic force, and the matter to be moved is increased in the ratio of the density, the time
which is necessary for producing the same motion as before will be increased in the subduplicate ratio of the
density, and will be diminished in the subduplicate ratio of the elastic force. And therefore the velocity of the
pulses will be in a ratio compounded of the subduplicate ratio of the density of the medium inversely, and
the subduplicate ratio of the elastic force directly. Q.E.D.

This Proposition will be made more clear from the construction of the following Problem.

Proposition xlix. Problem xi.
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The density and elastic force of a medium being given, to find the velocity of the pulses.

Suppose the medium to be pressed by an incumbent weight after the manner of our air; and let A be the
height of a homogeneous medium, whose weight is equal to the incumbent weight, and whose density is the
same with the density of the compressed medium in which the pulses are propagated. Suppose a pendulum
to be constructed whose length between the point of suspension and the centre of oscillation is A: and in the
time in which that pendulum will perform one entire oscillation composed of its going and returning, the
pulse will be propagated right onwards through a space equal to the circumference of a circle described with
the radius A.

For, letting those things stand which were constructed in Prop.XLVII, if any physical line, as EF,
describing the space PS in each vibration, be acted on in the extremities P and S of every going and return
that it makes by an elastic force that is equal to its weight, it will perform its several vibrations in the time in
which the same might oscillate in a cycloid whose whole perimeter is equal to the length PS; and that
because equal forces will impel equal corpuscles through equal spaces in the same or equal times. Therefore
since the times of the oscillations are in the subduplicate ratio of the lengths of the pendulums, and the
length of the pendulum is equal to half the arc of the whole cycloid, the time of one vibration would be to the
time of the oscillation of a pendulum whose length is A in the subduplicate ratio of the length ¥2PS or PO to
the length A. But the elastic force with which the physical lineola EG is urged, when it is found in its extreme
places P, S, was (in the demonstration of Prop. XLVII) to its whole elastic force as HL — KN to V, that is
(since the point K now falls upon P), as HK to V: and all that force, or which is the same thing, the incumbent
weight by which the lineola EG is compressed, is to the weight of the lineola as the altitude A of the

222/296



incumbent weight to EG the length of the lineola; and therefore, ex aequo, the force with -
which the lineola EG is urged in the places P and S is to the weight of that lineola as HK x I‘h'lllllb
A to V x EG; or as PO x A to VV; because HK was to EG as PO to V. Therefore since the |[j
times in which equal bodies are impelled through equal spaces are reciprocally in the
subduplicate ratio of the forces, the time of one vibration, produced by the action of that

elastic force, will be to the time of a vibration, produced by the impulse of the weight in a

i

subduplicate ratio of VV to PO x A, and therefore to the time of the oscillation ofa -

i

pendulum whose length is A in the subduplicate ratio of VV to PO x A, and the
subduplicate ratio of PO to A conjunctly; that is, in the entire ratio of V to A. But in the
time of one vibration composed of the going and returning of the
pendulum, the pulse will be propagated right onward through a
space equal to its breadth BC. Therefore the time in which a pulse
runs over the space BC is to the time of one oscillation composed of
the going and returning of the pendulum as V to A, that is, as BC to

the circumference of a circle whose radius is A. But the time in which

the pulse will run over the space BC is to the time in which it will run

. ,q}q

over a length equal to that circumference in the same ratio; and therefore in the time of
such an oscillation the pulse will run over a length equal to that circumference. Q.E.D.

o P

Cor. 1. The velocity of the pulses is equal to that which heavy bodies acquire by falling
with an equally accelerated motion, and in their fall describing half the altitude A. For the

]

pulse will, in the time of this fall, supposing it to move with the velocity acquired by that ,’lil]lfl” ’
fall, run over a space that will be equal to the whole altitude A; and therefore in the time of

one oscillation composed of one going and return, will go over a space equal to the
circumference of a circle described with the radius A; for the time of the fall is to the time
of oscillation as the radius of a circle to its circumference.

Cor. 2. Therefore since that altitude A is as the elastic force of the fluid directly, and the
density of the same inversely, the velocity of the pulses will be in a ratio compounded of
the subduplicate ratio of the density inversely, and the subduplicate ratio of the elastic
force directly.

M

Proposition 1. Problem xii.

To find the distances of the pulses.

Let the number of the vibrations of the body, by whose tremor the pulses are produced, be found to any
given time. By that number divide the space which a pulse can go over in the same time, and the part found
will be the breadth of one pulse. Q.E.IL

Scholium.

The last Propositions respect the motions of light and sounds; for since light is propagated in right lines, it
is certain that it cannot consist in action alone (by Prop. XLI and XLII). As to sounds, since they arise from
tremulous bodies, they can be nothing else but pulses of the air propagated through it (by Prop. XLIII); and
this is confirmed by the tremors which sounds, if they be loud and deep, excite in the bodies near them, as
we experience in the sound of drums; for quick and short tremors are less easily excited. But it is well known
that any sounds, falling upon strings in unison with the sonorous bodies, excite tremors in those strings. This
is also confirmed from the velocity of sounds; for since the specific gravities of rain-water and quicksilver are
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to one another as about 1 to 13%3, and when the mercury in the barometer is at the height of 30 inches of our
measure, the specific gravities of the air and of rain-water are to one another as about 1 to 870, therefore the
specific gravity of air and quicksilver are to each other as 1 to 11890. Therefore when the height of the
quicksilver is at 30 inches, a height of uniform air, whose weight would be sufficient to compress our air to
the density we find it to be of, must be equal to 356700 inches, or 29725 feet of our measure; and this is that
very height of the medium, which I have called A in the construction of the foregoing Proposition. A circle

whose radius is 29725 feet is 186768 feet in circumference. And since a pendulum 39% inches in length

completes one oscillation, composed of its going and return, in two seconds of time, as is commonly known,
it follows that a pendulum 29725 feet, or 356700 inches in length will perform a like oscillation in 19034
seconds. Therefore in that time a sound will go right onwards 186768 feet, and therefore in one second 979
feet.

But in this computation we have made no allowance for the crassitude of the solid particles of the air, by
which the sound is propagated instantaneously. Because the weight of air is to the weight of water as 1 to
870, and because salts are almost twice as dense as water; if the particles of air are supposed to be of near
the same density as those of water or salt, and the rarity of the air arises from the intervals of the particles;
the diameter of one particle of air will be to the interval between the centres of the particles as 1 to about 9 or
10, and to the interval between the particles themselves as 1 to 8 or 9. Therefore to 979 feet, which, according

to the above calculation, a sound will advance forward in one second of time, we may add 99L9, or about 109

feet, to compensate for the crassitude of the particles of the air: and then a sound will go forward about 1088
feet in one second of time.

Moreover, the vapours floating in the air being of another spring, and a different tone, will hardly, if at all,
partake of the motion of the true air in which the sounds are propagated. Now if these vapours remain
unmoved, that motion will be propagated the swifter through the true air alone, and that in the subduplicate
ratio of the defect of the matter. So if the atmosphere consist of ten parts of true air and one part of vapours,
the motion of sounds will be swifter in the subduplicate ratio of 11 to 10, or very nearly in the entire ratio of
21 to 20, than if it were propagated through eleven parts of true air: and therefore the motion of sounds
above discovered must be increased in that ratio. By this means the sound will pass through 1142 feet in one
second of time.

These things will be found true in spring and autumn, when the air is rarefied by the gentle warmth of
those seasons, and by that means its elastic force becomes somewhat more intense. But in winter, when the
air is condensed by the cold, and its elastic force is somewhat remitted, the motion of sounds will be slower
in a subduplicate ratio of the density; and, on the other hand, swifter in the summer.

Now by experiments it actually appears that sounds do really advance in one second of time about 1142
feet of English measure, or 1070 feet of French measure.

The velocity of sounds being known, the intervals of the pulses are known also. For M. Sauveur, by some
experiments that he made, found that an open pipe about five Paris feet in length gives a sound of the same
tone with a viol-string that vibrates a hundred times in one second. Therefore there are near 100 pulses in a
space of 1070 Paris feet, which a sound runs over in a second of time; and therefore one pulse fills up a space

of about 10 1% Paris feet, that is, about twice the length of the pipe. From whence it is probable that the
breadths of the pulses, in all sounds made in open pipes, are equal to twice the length of the pipes.

Moreover, from the Corollary of Prop. XLVII appears the reason why the sounds immediately cease with
the motion of the sonorous body, and why they are heard no longer when we are at a great distance from the
sonorous bodies than when we are very near them. And besides, from the foregoing principles, it plainly
appears how it comes to pass that sounds are so mightily increased in speaking-trumpets; for all reciprocal
motion uses to be increased by the generating cause at each return. And in tubes hindering the dilatation of
the sounds, the motion decays more slowly, and recurs more forcibly; and therefore is the more increased by
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the new motion impressed at each return. And these are the principal phaenomena of sounds.

(4
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The Mathematical Principles of Natural Philosophy

by Isaac Newton

Book 2.9
SECTION IX.

Of the circular motion of fluids.

Hypothesis.

The resistance arising from the want of lubricity in the parts of a fluid, is, caeteris paribus, proportional to
the velocity with which the parts of the fluid are separated from each other.

Proposition li. Theorem xxxix.

If a solid cylinder infinitely long, in an uniform and infinite fluid, revolve with an uniform motion about an
axis given in position, and the fluid be forced round by only this impulse of the cylinder, and every part of
the fluid persevere uniformly in its motion; I say, that the periodic times of the parts of the fluid are as
their distances from the axis of the cylinder.

Let AFL be a cylinder turning uniformly about the axis S, and let
the concentric circles BGM, CHN, DIO, EKP, &c., divide the fluid
into innumerable concentric cylindric solid orbs of the same
thickness. Then, because the fluid is homogeneous, the impressions
which the contiguous orbs make upon each other mutually will be
(by the Hypothesis) as their translations from each other, and as the
contiguous superficies upon which the impressions are made. If the

e,

impression made upon any orb be greater or less on its concave than

onits convex side, the stronger impression will prevail, and will

™

'~\‘ "'\ "-,‘“ I s .' I, either accelerate or retard the motion of the orb, according as it
i ' agrees with, or is contrary to, the motion of the same. Therefore,
that everyorb may persevere uniformly in its motion, the
impressions made on both sides must be equal and their directions

contrary. Therefore since the impressions are as the contiguous
superficies, and as their translations from one another, the translations will be inversely as the superficies,
that is, inversely as the distances of the superficies from the axis. But the differences of the angular motions
about the axis are as those translations applied to the distances, or as the translations directly and the
distances inversely; that is, joining these ratios together, as the squares of the distances inversely. Therefore
if there be erected the lines Aa, Bb, Cc, Dd, Ee, &c., perpendicular to the several parts of he infinite right line
SABCDEQ, and reciprocally proportional to the squares of SA, SB, SC, SD, SE, &c., and through the
extremities of those perpendiculars there be supposed to pass an hyperbolic curve, the sums of the
differences, that is, the whole angular motions, will be as the correspondent sums of the lines Aa, Bb, Cc, Dd,
Ee, that is (if to constitute a medium uniformly fluid the number of the orbs be increased and their breadth
diminished in infinitum), as the hyperbolic areas AaQ, BbQ, CcQ, DdQ, EeQ, &c., analogous to the sums; and
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the times, reciprocally proportional to the angular motions, will be also reciprocally proportional to those
areas. Therefore the periodic time of any particle as D, is reciprocally as the area DdQ, thatis (as appears
from the known methods of quadratures of curves), directly as the distance SD. Q.E.D.

Cor. 1. Hence the angular motions of the particles of the fluid are reciprocally as their distances from the
axis of the cylinder, and the absolute velocities are equal.

Cor. 2. If a fluid be contained in a cylindric vessel of an infinite length, and contain another cylinder
within, and both the cylinders revolve about one common axis, and the times of their revolutions be as their
semi-diameters, and every part of the fluid perseveres in its motion, the periodic times of the several parts
will be as the distances from the axis of the cylinders.

Cor. 3. If there be added or taken away any common quantity of angular motion from the cylinder and
fluid moving in this manner; yet because this new motion will not alter the mutual attrition of the parts of
the fluid, the motion of the parts among themselves will not be changed; for the translations of the parts
from one another depend upon the attrition. Any part will persevere in that motion, which, by the attrition
made on both sides with contrary directions, is no more accelerated than it is retarded.

Cor. 4. Therefore if there be taken away from this whole system of the cylinders and the fluid all the
angular motion of the outward cylinder, we shall have the motion of the fluid in a quiescent cylinder.

Cor. 5. Therefore if the fluid and outward cylinder are at rest, and the inward cylinder revolve uniformly,
there will be communicated a circular motion to the fluid, which will be propagated by degrees through the
whole fluid; and will go on continually increasing, till such time as the several parts of the fluid acquire the
motion determined in Cor. 4.

Cor. 6. And because the fluid endeavours to propagate its motion still farther, its impulse will carry the
outmost cylinder also about with it, unless the cylinder be violently detained; and accelerate its motion till
the periodic times of both cylinders become equal among themselves. But if the outward cylinder be
violently detained, it will make an effort to retard the motion of the fluid; and unless the inward cylinder
preserve that motion by means of some external force impressed thereon, it will make it cease by degrees.

All these things will be found true by making the experiment in deep standing water.

Proposition lii. Theorem xI.

If a solid sphere, in an uniform and infinite fluid, revolves about an axis given in position, with an uniform
motion, and the fluid be forced round by only this impulse of the sphere; and every part of the fluid
perseveres uniformly in its motion; I say, that the periodic times of the parts of the fluid are as the squares
of their distances from the centre of the sphere.

Case 1. Let AFL be a sphere turning uniformly about the axis S, and let the concentric circles BGM, CHN,
DIO, EKP, &c., divide the fluid into innumerable concentric orbs of the same thickness. Suppose those orbs
to be solid; and, because the fluid is homogeneous, the impressions which the contiguous orbs make one
upon another will be (by the supposition) as their translations from one another, and the contiguous
superficies upon which the impressions are made. If the impression upon any orb be greater or less upon its
concave than upon its convex side, the more forcible impression will prevail, and will either accelerate or
retard the velocity of the orb, according as it is directed with a conspiring or contrary motion to that of the
orb. Therefore that every orb may persevere uniformly in its motion, it is necessary that the impressions
made upon both sides of the orb should be equal, and have contrary directions. Therefore since the
impressions are as the contiguous superficies, and as their translations from one another, the translations
will be inversely as the superficies, that is, inversely as the squares of the distances of the superficies from
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agular motions about the axis are as those translations applied to the
distances, or as the translations directly and the distances inversely;
that is, by compounding those ratios, as the cubes of the distances
inversely. Therefore if upon the several parts of the infinite right line
SABCDEQ there be erected the perpendiculars Aa, Bb, Cc, Dd, Ee,
&ec., reciprocally proportional to the cubes of SA, SB, SC, SD, SE, &c.,
the sums of the differences, that is, the whole angular motions will
be as the corresponding sums of the lines Aa, Bb, Cc, Dd, Ee, &c.,

that is (if to constitute an uniformly fluid medium the number of the
orbs beincreased and their thickness diminished in infinitum), as
the hyperbolic areas AaQ, BbQ, CcQ, DdQ, EeQ, &c., analogous to
the sums; and the periodic times being reciprocally proportional to

the angular motions, will be also reciprocally proportional to those
areas. Therefore the periodic time of any orb DIO is reciprocally as
the area DdQ, that is (by the known methods of quadratures), directly as the square of the distance SD.
Which was first to be demonstrated.

Case 2. From the centre of the sphere let there be drawn a great number of indefinite right lines, making
given angles with the axis, exceeding one another by equal differences; and, by these lines revolving about
the axis, conceive the orbs to be cut into innumerable annuli; then will every annulus have four annuli
contiguous to it, that is, one on its inside, one on its outside, and two on each hand. Now each of these annuli
cannot be impelled equally and with contrary directions by the attrition of the interior and exterior annuli,
unless the motion be communicated according to the law which we demonstrated in Case 1. This appears
from that demonstration. And therefore any series of annuli, taken in any right line extending itself in
infinitum from the globe, will move according to the law of Case 1, except we should imagine it hindered by
the attrition of the annuli on each side of it. But now in a motion, according to this law, no such is, and
therefore cannot be, any obstacle to the motions persevering according to that law. If annuli at equal
distances from the centre revolve either more swiftly or more slowly near the poles than near the ecliptic,
they will be accelerated if slow, and retarded if swift, by their mutual attrition; and so the periodic times will
continually approach to equality, according to the law of Case 1. Therefore this attrition will not at all hinder
the motion from going on according to the law of Case 1, and therefore that law will take place; that is, the
periodic times of the several annuli will be as the squares of their distances from the centre of the globe.
Which was to be demonstrated in the second place.

Case 3. Let now every annulus be divided by transverse sections into innumerable particles constituting a
substance absolutely and uniformly fluid; and because these sections do not at all respect the law of circular
motion, but only serve to produce a fluid substance, the law of circular motion will continue the same as
before. All the very small annuli will either not at all change their asperity and force of mutual attrition upon
account of these sections, or else they will change the same equally. Therefore the proportion of the causes
remaining the same, the proportion of the effects will remain the same also; that is, the proportion of the
motions and the periodic times. Q.E.D. But now as the circular motion, and the centrifugal force thence
arising, is greater at the ecliptic than at the poles, there must be some cause operating to retain the several
particles in their circles; otherwise the matter that is at the ecliptic will always recede from the centre, and
come round about to the poles by the outside of the vortex, and from thence return by the axis to the ecliptic
with a perpetual circulation.

Cor. 1. Hence the angular motions of the parts of the fluid about the axis of the globe are reciprocally as the
squares of the distances from the centre of the globe, and the absolute velocities are reciprocally as the same
squares applied to the distances from the axis.

Cor. 2. If a globe revolve with a uniform motion about an axis of a given position in a similar and infinite
quiescent fluid with an uniform motion, it will communicate a whirling motion to the fluid like that of a
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vortex, and that motion will by degrees be propagated onward in infinitum; and this motion will be
increased, continually in every part of the fluid, till the periodical times of the several parts become as the
squares of the distances from the centre of the globe.

Cor. 3. Because the inward parts of the vortex are by reason of their greater velocity continually pressing
upon and driving forward the external parts, and by that action are perpetually communicating motion to
them, and at the same time those exterior parts communicate the same quantity of motion to those that lie
still beyond them, and by this action preserve the quantity of their motion continually unchanged, it is plain
that the motion is perpetually transferred from the centre to the circumference of the vortex, till it is quite
swallowed up and lost in the boundless extent of that circumference. The matter between any two spherical
superficies concentrical to the vortex will never be accelerated; because that matter will be always
transferring the motion it receives from the matter nearer the centre to that matter which lies nearer the
circumference.

Cor. 4. Therefore, in order to continue avortex in the same state of motion, some active principle is
required from which the globe may receive continually the same quantity of motion which it is always
communicating to the matter of the vortex. Without such a principle it will undoubtedly come to pass that
the globe and the inward parts of the vortex, being always propagating their motion to the outward parts,
and not receiving any new motion, will gradually move slower and slower, and at last be carried round no
longer.

Cor. 5. If another globe should be swimming in the same vortex at a certain distance from its centre, and in
the mean time by some force revolve constantly about an axis of a given inclination, the motion of this globe
will drive the fluid round after the manner of a vortex; and at first this new and small vortex will revolve with
its globe about the centre of the other; and in the mean time its motion will creep on farther and farther, and
by degrees be propagated in infinitum, after the manner of the first vortex. And for the same reason that the
globe of the new vortex was carried about before by the motion of the other vortex, the globe of this other
will be carried about by the motion of this new vortex, so that the two globes will revolve about some
intermediate point, and by reason of that circular motion mutually fly from each other, unless some force
restrains them. Afterward, if the constantly impressed forces, by which the globes persevere in their motions,
should cease, and every thing be left to act according to the laws of mechanics, the motion of the globes will
languish by degrees (for the reason assigned in Cor. 3 and 4), and the vortices at last will quite stand still.

Cor. 6. If several globes in given places should constantly revolve with determined velocities about axes
given in position, there would arise from them as many vortices going on in infinitum. For upon the same
account that any one globe propagates its motion in infinitum, each globe apart will propagate its own
motion in infinitum also; so that every part of the infinite fluid will be agitated with a motion resulting from
the actions of all the globes. Therefore the vortices will not be confined by any certain limits, but by degrees
run mutually into each other; and by the mutual actions of the vortices on each other, the globes will be
perpetually moved from their places, as was shewn in the last Corollary; neither can they possibly keep any
certain position among themselves, unless some force restrains them. But ifthose forces, which are
constantly impressed upon the globes to continue these motions, should cease, the matter (for the reason
assigned in Cor. 3 and 4) will gradually stop, and cease to move in vortices.

Cor. 7. If a similar fluid be inclosed in a spherical vessel, and, by the uniform rotation of a globe in its
centre, is driven round in a vortex; and the globe and vessel revolve the same way about the same axis, and
their periodical times be as the squares of the semi-diameters; the parts of the fluid will not go on in their
motions without acceleration or retardation, till their periodical times are as the squares of their distances
from the centre of the vortex. No constitution of a vortex can be permanent but this.

Cor. 8. If the vessel, the inclosed fluid, and the globe, retain this motion, and revolve besides with a
common angular motion about any given axis, because the mutual attrition of the parts of the fluid is not
changed by this motion, the motions of the parts among each other will not be changed; for the translations
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of the parts among themselves depend upon this attrition. Any part will persevere in that motion in which its
attrition on one side retards it just as much as its attrition on the other side accelerates it.

Cor. 9. Therefore if the vessel be quiescent, and the motion of the globe be given, the motion of the fluid
will be given. For conceive a plane to pass through the axis of the globe, and to revolve with a contrary
motion; and suppose the sum of the time of this revolution and of the revolution of the globe to be to the
time of the revolution of the globe as the square of the semi-diameter of the vessel to the square of the semi-
diameter of the globe; and the periodic times of the parts of the fluid in respect of this plane will be as the
squares of their distances from the centre of the globe.

Cor. 10. Therefore if the vessel move about the same axis with the globe, or with a given velocity about a
different one, the motion of the fluid will be given. For if from the whole system we take away the angular
motion of the vessel, all the motions will remain the same among themselves as before, by Cor. 8, and those
motions will be given by Cor. 9.

Cor. 11. If the vessel and the fluid are quiescent, and the globe revolves with an uniform motion, that
motion will be propagated by degrees through the whole fluid to the vessel, and the vessel will be carried
round by it, unless violently detained; and the fluid and the vessel will be continually accelerated till their
periodic times become equal to the periodic times of the globe. If the vessel be either withheld by some force,
or revolve with any constant and uniform motion, the medium will come by little and little to the state of
motion defined in Cor. 8, 9, 10, nor will it ever persevere in any other state. But if then the forces, by which
theglobe and vessel revolve with certain motions, should cease, and the whole system be left to act
according to the mechanical laws, the vessel and globe, by means of the intervening fluid, will act upon each
other, and will continue to propagate their motions through the fluid to each other, till their periodic times
become equal among themselves, and the whole system revolves together like one solid body.

Scholium.

In all these reasonings I suppose the fluid to consist of matter of uniform density and fluidity; I mean, that
the fluid is such, that a globe placed any where therein may propagate with the same motion of its own, at
distances from itself continually equal, similar and equal motions in the fluid in the same interval of time.
The matter by its circular motion endeavours to recede from the axis of the vortex, and therefore presses all
the matter that lies beyond. This pressure makes the attrition greater, and the separation of the parts more
difficult; and by consequence diminishes the fluidity of the matter. Again; if the parts of the fluid are in any
one place denser or larger than in the others, the fluidity will be less in that place, because there are fewer
superficies where the parts can be separated from each other. In these cases I suppose the defect of the
fluidity to be supplied by the smoothness or softness of the parts, or some other condition; otherwise the
matter where it is less fluid will cohere more, and be more sluggish, and therefore will receive the motion
more slowly, and propagate it farther than agrees with the ratio above assigned. If the vessel be not spherical,
the particles will move in lines not circular, but answering to the figure of the vessel; and the periodic times
will be nearly as the squares of the mean distances from the centre. In the parts between the centre and the
circumference the motions will be slower where the spaces are wide, and swifter where narrow; but yet the
particles will not tend to the circumference at all the more for their greater swiftness; for they then describe
arcs of less curvity, and the conatus of receding from the centre is as much diminished by the diminution of
this curvature as it is augmented by the increase of the velocity. As they go out of narrow into wide spaces,
they recede a little farther from the centre, but in doing so are retarded; and when they come out of wide into
narrow spaces, they are again accelerated; and so each particle is retarded and accelerated by turns for ever.
These things will come to pass in a rigid vessel; for the state of vortices in an infinite fluid is known by Cor. 6
of this Proposition.
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I have endeavoured in this Proposition to investigate the properties of vortices, that I might find whether
the celestial phenomena can be explained by them; for the phenomenon is this, that the periodic times of the
planets revolving about Jupiter are in the sesquiplicate ratio of their distances from Jupiter's centre; and the
same rule obtains also among the planets that revolve about the sun. And these rules obtain also with the
greatest accuracy, as far as has been yet discovered by astronomical observation. Therefore if those planets
are carried round in vortices revolving about Jupiter and the sun, the vortices must revolve according to that
law. But here we found the periodic times of the parts of the vortex to be in the duplicate ratio of the
distances from the centre of motion; and this ratio cannot be diminished and reduced to the sesquiplicate,
unless either the matter of the vortex be more fluid the farther it is from the centre, or the resistance arising
from the want of lubricity in the parts of the fluid should, as the velocity with which the parts of the fluid are
separated goes on increasing, be augmented with it in a greater ratio than that in which the velocity
increases. But neither of these suppositions seem reasonable. The more gross and less fluid parts will tend to
the circumference, unless they are heavy towards the centre. And though, for the sake of demonstration, I
proposed, at the beginning of this Section, an Hypothesis that the resistance is proportional to the velocity,
nevertheless, it is in truth probable that the resistance is in a less ratio than that of the velocity; which
granted, the periodic times of the parts of the vortex will bein a greater than the duplicate ratio of the
distances from its centre. If, as some think, the vortices move more swiftly near the centre, then slower to a
certain limit, then again swifter near the circumference, certainty neither the sesquiplicate, nor any other
certain and determinate ratio, can obtain in them. Let philosophers then see how that phenomenon of the
sesquiplicate ratio can be accounted for by vortices.

Proposition liii. Theorem xli.

Bodies carried about in a vortex, and returning in the same orb, are of the same density with the vortex,
and are moved according to the same law with the parts of the vortex, as to velocity and direction of
motion.

For if any small part of the vortex, whose particles or physical points preserve a given situation among
each other, be supposed to be congealed, this particle will move according to the same law as before, since no
change is made either in its density, vis insita, or figure. And again; if a congealed or solid part of the vortex
be of the same density with the rest of the vortex, and be resolved into a fluid, this will move according to the
same law as before, except in so far as its particles, now become fluid, may be moved among themselves.
Neglect, therefore, the motion of the particles among themselves as not at all concerning the progressive
motion of the whole, and the motion of the whole will be the same as before. But this motion will be the
same with the motion of other parts of the vortex at equal distances from the centre; because the solid, now
resolved into a fluid, is become perfectly like to the other parts of the vortex. Therefore a solid, if it be of the
same density with the matter of the vortex, will move with the same motion as the parts thereof, being
relatively at rest in the matter that surrounds it. If it be more dense, it will endeavour more than before to
recede from the centre; and therefore overcoming that force of the vortex, by which, being, as it were, kept in
equilibrio, it was retained in its orbit, it will recede from the centre, and in its revolution describe a spiral,
returning no longer into the same orbit. And, by the same argument, if it be more rare, it will approach to
the centre. Therefore it can never continually go round in the same orbit, unless it be of the same density
with the fluid. But we have shewn in that case that it would revolve according to the same law with those
parts of the fluid that are at the same or equal distances from the centre of the vortex.

Cor. 1. Therefore a solid revolving in a vortex, and continually going round in the same orbit, is relatively
quiescent in the fluid that carries it.

Cor. 2. And if the vortex be of an uniform density, the same body may revolve at any distance from the
centre of the vortex.
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Scholium.

Hence it is manifest that the planets are not carried round in corporeal vortices; for, according to the
Copernican hypothesis, the planets going round the sun revolve
in ellipses, having the sun in their common focus; and by radii
drawn to the sun describe areas proportional to the times. But
now the parts of a vortex can never revolve with such a motion.
Let AD, BE, CF, represent three orbits described about the sun S,
of which let the utmost circle CF be concentric to the sun; and let
the aphelia of the two innermost be A, B; and their perihelia D, E.
Therefore a body revolving in the orb CF, describing, by a radius
drawn to the sun, areas proportional to the times, will move with
an uniform motion. And, according to the laws of astronomy, the
body revolving in the orb BE will move slower in its aphelion B,

and swifter in its perihelion E; whereas, according to the laws of
mechanics, the matter of the vortex ought to move more swiftly in
the narrow space between A and C than in the wide space between D and F; that is, more swiftly in the
aphelion than in the perihelion. Now these two conclusions contradict each other. So at the beginning of the
sign of Virgo, where the aphelion of Mars is at present, the distance between the orbits of Mars and Venus is
to the distance between the same orbits, at the beginning of the sign of Pisces, as about 3 to 2; and therefore
the matter of the vortex between those orbits ought to be swifter at the beginning of Pisces than at the
beginning of Virgo in the ratio of 3 to 2; for the narrower the space is through which the same quantity of
matter passes in the same time of one revolution, the greater will be the velocity with which it passes
through it. Therefore if the earth being relatively at rest in this celestial matter should be carried round by it,
and revolve together with it about the sun, the velocity of the earth at the beginning of Pisces would be to its
velocity at the beginning of Virgo in a sesquialteral ratio. Therefore the sun's apparent diurnal motion at the
beginning of Virgo ought to be above 70 minutes, and at the beginning of Pisces less than 48 minutes;
whereas, on the contrary, that apparent motion of the sun is really greater at the beginning of Pisces than at
the beginning of Virgo, as experience testifies; and therefore the earth is swifter at the beginning of Virgo
than at the beginning of Pisces; so that the hypothesis of vortices is utterly irreconcileable with astronomical
phaenomena, and rather serves to perplex than explain the heavenly motions. How these motions are
performed in free spaces without vortices, may be understood by the first Book; and I shall now more fully
treat of it in the following Book.
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BooK 3.0

Book 111.

In the preceding Books I have laid down the principles of philosophy, principles not philosophical, but
mathematical: such, to wit, as we may build our reasonings upon in philosophical inquiries. These
principles are the laws and conditions of certain motions, and powers or forces, which chiefly have respect
to philosophy: but, lest they should have appeared of themselves dry and barren, I have illustrated them
here and there with some philosophical scholiums, giving an account of such things as are of more
general nature, and which philosophy seems chiefly to be founded on; such as the density and the
resistance of bodies, spaces void of all bodies, and the motion of light and sounds. It remains that, from
the same principles, I now demonstrate the frame of the System of the World. Upon this subject I had,
indeed, composed the third Book in a popular method, that it might be read by many; but afterward,
considering that such as had not sufficiently entered into the principles could not easily discern the
strength of the consequences, nor lay aside the prejudices to which they had been many years
accustomed, therefore, to prevent the disputes which might be raised upon such accounts, I chose to
reduce the substance of this Book into the form of Propositions (in the mathematical way), which should
be read by those only who had first made themselves masters of the principles established in the
preceding Books: not that I would advise any one to the previous study of every Proposition of those
Books; for they abound with such as might cost too much time, even to readers of good mathematical
learning. It is enough if one carefully reads the Definitions, the Laws of Motion, and the first three
Sections of the first Book. He may then pass on to this Book, and consult such of the remaining
Propositions of the first two Books, as the references in this, and his occasions, shall require.
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Rules of Reasoning in Philosophy.

Rule 1.

We are to admit no more causes of natural things than such as are both time and sufficient to explain their
appearances.

To this purpose the philosophers say that Nature does nothing in vain, and more is in vain when less will
serve; for Nature is pleased with simplicity, and affects not the pomp of superfluous causes.

Rule ii.

Therefore to the same natural effects we must, as far as possible, assign the same causes.

As to respiration in a man and in a beast; the descent of stones in Europe and in America; the light of our
culinary fire and of the sun; the reflection of light in the earth, and in the planets.

Rule iii.

The qualities of bodies, which admit neither intension nor remission of degrees, and which are found to
belong to all bodies within the reach of our experiments, are to be esteemed the universal qualities of all
bodies whatsoever.

For since the qualities of bodies are only known to us by experiments, we are to hold for universal all such
as universally agree with experiments; and such as are not liable to diminution can never be quite taken
away. We are certainly not to relinquish the evidence of experiments for the sake of dreams and vain fictions
of our own devising; nor are we to recede from the analogy of Nature, which uses to be simple, and always
consonant to itself. We no other way know the extension of bodies than by our senses, nor do these reach it
in all bodies; but because we perceive extension in all that are sensible, therefore we ascribe it universally to
all others also. That abundance of bodies are hard, we learn by experience; and because the hardness of the
whole arises from the hardness of the parts, we therefore justly infer the hardness of the undivided particles
not only of the bodies we feel but of all others. That all bodies are impenetrable, we gather not from reason,
but from sensation. The bodies which we handle we find impenetrable, and thence conclude impenetrability
to be an universal property of all bodies whatsoever. That all bodies are moveable, and endowed with certain
powers (which we call the vires inertiae) of persevering in their motion, or in their rest, we only infer from
the like properties observed in the bodies which we have seen. The extension, hardness, impenetrability,
mobility, and vis inertiae of the whole, result from the extension, hardness, impenetrability, mobility, and
vires inertiae of the parts; and thence we conclude the least particles of all bodies to be also all extended,
and hard and impenetrable, and moveable, and endowed with their proper vires inertia. And this is the
foundation of all philosophy. Moreover, that the divided but contiguous particles of bodies may be separated
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from one another, is matter of observation; and, in the particles that remain undivided, our minds are able to
distinguish yet lesser parts, as is mathematically demonstrated. But whether the parts so distinguished, and
not yet divided, may, by the powers of Nature, be actually divided and separated from one an other, we
cannot certainly determine. Yet, had we the proof of but one experiment that any undivided particle, in
breaking a hard and solid body, suffered a division, we might by virtue of this rule conclude that the
undivided as well as the divided particles may be divided and actually separated to infinity.

Lastly, if it universally appears, by experiments and astronomical observations, that all bodies about the
earth gravitate towards the earth, and that in proportion to the quantity of matter which they severally
contain; that the moon likewise, according to the quantity of its matter, gravitates towards the earth; that, on
the other hand, our sea gravitates towards the moon; and all the planets mutually one towards another; and
the comets in like manner towards the sun; we must, in consequence of this rule, universally allow that all
bodies whatsoever are endowed with a principle of mutual gravitation. For the argument from the
appearances concludes with more force for the universal gravitation of all bodies than for their
impenetrability; of which, among those in the celestial regions, we have no experiments, nor any manner of
observation. Not that I affirm gravity to be essential to bodies: by their vis insita I mean nothing but their vis
inertiae. This is immutable. Their gravity is diminished as they recede from the earth.

Rule iv.

In experimental philosophy we are to look upon propositions collected by general induction from
phaenomena as accurately or very nearly true, notwithstanding any contrary hypotheses that may be
imagined, till such time as other phaenomena occur, by which they may either be made more accurate, or
liable to exceptions.

This rule we must follow, that the argument of induction may not be evaded by hypotheses.

(4
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Book 3.2

PHAENOMENA, OR APPEARANCES.

Phaenomenon 1.

That the circumjovial planets, by radii drawn to Jupiter's centre, describe areas proportional to the times
of description; and that their periodic times, the fixed stars being at rest, are in the sesquiplicate
proportion of their distances from, its centre.

This we know from astronomical observations. For the orbits of these planets differ but insensibly from
circles concentric to Jupiter; and their motions in those circles are found to be uniform. And all astronomers
agree that their periodic times are in the sesquiplicate proportion of the semi-diameters of their orbits; and
so it manifestly appears from the following table.

The periodic times of the satellites of Jupiter.
1d.18h.27’.34". 3d.13h.13"42". 7d.3h.42’36". 16d.16h.32'9".

The distances of the satellites from Jupiter's centre.

From the observations of 1 2 3 4

Borelli . 5% 8% 14 2473

EZZ\;?III}I’ 1?3 ng %llcezzz;).e 2’52 2’78 12’47 2;’72 semi-diameter of Jupiter.
Cassini by the eclip. of the satel. | 5% 9 1423/60 | 253/10

From the periodic times 5,667 : 9,017 : 14,384 | 25,299

Mr. Pound has determined, by the help of excellent micrometers, the diameters of Jupiter and the
elongation of its satellites after the following manner. The greatest heliocentric elongation of the fourth
satellite from Jupiter's centre was taken with a micrometer in a 15 feet telescope, and at the mean distance of
Jupiter from the earth was found about 8’ 16”. The elongation of the third satellite was taken with a
micrometer in a telescope of 123 feet, and at the same distance of Jupiter from the earth was found 4’ 42”.
The greatest elongations of the other satellites, at the same distance of Jupiter from the earth, are found
from the periodic times to be 2’ 56” 477, and 1’ 51”7 6”.

The diameter of Jupiter taken with the micrometer in a 123 feet telescope several times, and reduced to
Jupiter's mean distance from the earth, proved always less than 40”, never less than 38", generally 39”. This
diameter in shorter telescopes is 40”, or 41”; for Jupiter's light is a little dilated by the unequal refrangibility
of the rays, and this dilatation bears less ratio to the diameter of Jupiter in the longer and more perfect
telescopes than in those which are shorter and less perfect. The times in which two satellites, the first and
the third, passed over Jupiter's body, were observed, from the beginning of the ingress to the beginning of
the egress, and from the complete ingress to the complete egress, with the long telescope. And from the
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transit of the first satellite, the diameter of Jupiter at its mean distance from the earth came forth 37 3 “. and

from the transit of the third 37 3 “. There was observed also the time in which the shadow of the first satellite

passed over Jupiter's body, and thence the diameter of Jupiter at its mean distance from the earth came out
about 37”. Let us suppose its diameter to be 374" very nearly, and then the greatest elongations of the first,
second, third, and fourth satellite will be respectively equal to 5,965, 9,494, 15,141, and 26,63 semi-
diameters of Jupiter.

Phaenomenon ii.

That the circumsaturnal planets, by radii drawn to Saturn's centre, describe areas proportional to the
times of description; and that their periodic times, the fixed stars being at rest, are in the sesquiplicate
proportion of their distances from its centre.

For, as Cassini from his own observations has determined, their distances from Saturn's centre and their
periodic times are as follow.

The periodic times of the satellites of Saturn.
1d.21h,18’27"”. 2d.17h.41’22". 4d.12h.25'12"”. 15d.22h.41"14"”. 79d.7h.48’00".

The distances of the satellites from Saturn's centre, in semi-diameters of its ring.

19
. 1=
[From observations 20 2. 3%2. 8. 24.

[From the periodic

times 1,93. 2,47. 3,45. 8. 23,35.

The greatest elongation of the fourth satellite from Saturn's centreis commonly determined from the
observations to be eight of those semi-diameters very nearly. But the greatest elongation of this satellite from
Saturn's centre, when taken with an excellent micrometer in Mr. Huygens' telescope of 123 feet, appeared to

be eight semi-diameters and 120 of a semi-diameter. And from this observation and the periodic times the

distances of the satellites from Saturn's centre in semi-diameters of the ring are 2.1. 2,69. 3,75. 8,7. and
25,35. The diameter of Saturn observed in the same telescope was found to be to the diameter of the ring as
3 to 7; and the diameter of the ring, May 28-29, 1719, was found to be 43”; and thence the diameter of the
ring when Saturn is at its mean distance from the earth is 42”, and the diameter of Saturn 18”. These things
appear so in very long and excellent telescopes, because in such telescopes the apparent magnitudes of the
heavenly bodies bear a greater proportion to the dilatation of light in the extremities of those bodies than in
shorter telescopes. If we, then, reject all the spurious light, the diameter of Saturn will not amount to more
than 16”.

Phaenomenon iii.

That the five primary planets, Mercury, Venus, Mars, Jupiter, and Saturn, with their several orbits,
encompass the sun.

That Mercury and Venus revolve about the sun, is evident from their moon-like appearances. When they
shine out with a full face, they are, in respect of us, beyond or above the sun; when they appear half full, they
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are about the same height on one side or other of the sun; when horned, they are below or between us and
the sun; and they are sometimes, when directly under, seen like spots traversing the sun's disk. That Mars
surrounds the sun, is as plain from its full face when near its conjunction with the sun, and from the gibbous
figure which it shews in its quadratures. And the same thing is demonstrable of Jupiter and Saturn, from
their appearing full in all situations; for the shadows of their satellites that appear sometimes upon their
disks make it plain that the light they shine with is not their own, but borrowed from the sun.

Phaenomenon iv.

That the fixed stars being at rest, the periodic times of the five primary planets, and (whether of the sun,
about the earth, or) of the earth about the sun, are in the sesquiplicate proportion of their mean distances
from the sun.

This proportion, first observed by Kepler, is now received by all astronomers; for the periodic times are the
same, and the dimensions of the orbits are the same, whether the sun revolves about the earth, or the earth
about the sun. And as to the measures of the periodic times, all astronomers are agreed about them. But for
thedimensions of the orbits, Kepler and Bullialdus, above all others, have determined them from
observations with the greatest accuracy; and the mean distances corresponding to the periodic times differ
but insensibly from those which they have assigned, and for the most part fall in between them; as we may
see from the following table.

The periodic times with respect to the fixed stars, of the planets and earth revolving about the sun, in
days and decimal parts of a day.

h 9 d b Q? 3

10759,275. 4332,514. 686,9785. 365,2505. 224,6176. 87,9692.

The mean distances of the planets and of the earth from the sun.

h 2 lof
/According to Kepler 951000. 519650. 152350.
)According to Bullialdus 954198. 522520. 152350.

lAccording to the periodic 954006, 520096, 152369

times
& Q )
\According to Kepler 100000. 72400. 38806.
\According to Bullialdus 100000. 72398. 38585.
According to the periodic 100000, 72333, 38710
times

As to Mercury and Venus, there can be no doubt about their distances from the sun; for they are
determined by the elongations of those planets from the sun; and for the distances of the superior planets, all
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dispute is cut off by the eclipses of the satellites of Jupiter. For by those eclipses the position of the shadow
which Jupiter projects is determined; whence we have the heliocentric longitude of Jupiter. And from its
heliocentric and geocentric longitudes compared together, we determine its distance.

Phaenomenon V.

Then the primary planets, by radii drawn to the earth, describe areas no wise proportional to the times;
but that the areas which they describe by radii drawn to the sun are proportional to the times of
description.

For to the earth they appear sometimes direct, sometimes stationary, nay, and sometimes retrograde. But
from the sun they are always seen direct, and to proceed with a motion nearly uniform, that is to say, a little
swifter in the perihelion and a little slower in the aphelion distances, so as to maintain an equality in the
description of the areas. This a noted proposition among astronomers, and particularly demonstrable in
Jupiter, from the eclipses of his satellites; by the help of which eclipses, as we have said, the heliocentric
longitudes of that planet, and its distances from the sun, are determined.

Phaenomenon vi.

That the moon, by a radius drawn to the earth's centre, describes an area proportional to the time of
description.

This we gather from the apparent motion of the moon, compared with its apparent diameter. It is true that
the motion of the moon is a little disturbed by the action of the sun: but in laying down these Phenomena I
neglect those small and inconsiderable errors.
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Propositions

(]

Proposition i. Theorem I.

That the forces by which the circumjovial planets are continually drawn off from rectilinear motions, and retained in their proper orbits, tend to Jupiter's
centre; and are reciprocally as the squares of the distances of the places of those planets from that centre.

The former part of this Proposition appears from Phaen. I, and Prop. II or III, Book I; the latter from Phaen. I, and Cor. 6, Prop. IV, of the same Book.

The same thing we are to understand of the planets which encompass Saturn, by Phaen. II.

Proposition ii. Theorem ii.

That the forces by which the primary planets are continually drawn off from rectilinear motions, and retained in their proper orbits, tend to the sun; and
are reciprocally as the squares of the distances of the places of those planets from the suits centre.

The former part of the Proposition is manifest from Phaen. V, and Prop. II, Book I; the latter from Phaen. IV, and Cor. 6, Prop. IV, of the same Book. But
this part of the Proposition is, with great accuracy, demonstrable from the quiescence of the aphelion points; for a very small aberration from the reciprocal
duplicate proportion would (by Cor. 1, Prop. XLV, Book I) produce a motion of the apsides sensible enough in every single revolution, and in many of them
enormously great.

Proposition iii. Theorem iii.

That the force by which the moon is retained in its orbit tends to the earth; and is reciprocally as the square of the distance of its place from the earth's
centre.

The former part of the Proposition is evident from Phaen. VI, and Prop. II or III, Book I; the latter from the very slow motion of the moon's apogee; which
in every single revolution amounting but to 3° 3’ in consequentia, may be neglected. For (by Cor. 1. Prop. XLV, Book I) it appears, that, if the distance of the
moon from the earth's centre is to the semi-diameter of the earth as D to 1, the force, from which such a motion will result, is reciprocally as D2 4/,,, i. e.,

reciprocally as the power of D, whose exponent is 24/, ,,; that is to say, in the proportion of the distance something greater than reciprocally duplicate, but

which comes 5934 times nearer to the duplicate than to the triplicate proportion. But in regard that this motion is owing to the action of the sun (as we shall
afterwards shew), it is here to be neglected. The action of the sun, attracting the moon from the earth, is nearly as the moon's distance from the earth; and
therefore (by what we have shewed in Cor. 2, Prop. XLV, Book I) is to the centripetal force of the moon as 2 to 357,45, or nearly so; that is, as 1 to 17829/ .
And if we neglect so inconsiderable a force of the sun, the remaining force, by which the moon is retained in its orb, will be reciprocally as D2. This will yet
more fully appear from comparing this force with the force of gravity, as is done in the next Proposition.

Cor. If we augment the mean centripetal force by which the moon is retained in its orb, first in the proportion of 177 29/, to 17829/, and then in the
duplicate proportion of the semi-diameter of the earth to the mean distance of the centres of the moon and earth, we shall have the centripetal force of the

moon at the surface of the earth; supposing this force, in descending to the earth's surface, continually to increase in the reciprocal duplicate proportion of the
height.

Proposition iv. Theorem iv.

That the moon gravitates towards the earth, and by the force of gravity is continually drawn off from a rectilinear motion, and retained in its orbit.

The mean distance of the moon from the earth in the syzygies in semi-diameters of the earth, is, according to Ptolemy and most astronomers, 59; according
to Vendelin and Huygens, 60; to Copernicus, 60Y3; to Street, 602/ 5 and to Tycho, 56Y2. But Tycho, and all that follow his tables of refraction, making the

refractions of the sun and moon (altogether against the nature of light) to exceed the refractions of the fixed stars, and that by four or five minutes near the
horizon, did thereby increase the moon's horizontal parallax by a like number of minutes, that is, by a twelfth or fifteenth part of the whole parallax. Correct
this error, and the distance will become about 602 semi-diameters of the earth, near to what others have assigned. Let us assume the mean distance of 60
diameters in the syzygies; and suppose one revolution of the moon, in respect of the fixed stars, to be completed in 27d.7h.43’, as astronomers have
determined; and the circumference of the earth to amount to 123249600 Paris feet, as the French have found by mensuration. And now if we imagine the
moon, deprived of all motion, to be let go, so as to descend towards the earth with the impulse of all that force by which (by Cor. Prop. III) it is retained in its
orb, it will in the space of one minute of time, describe in its fall 151/, Paris feet. This we gather by a calculus, founded either upon Prop. XXXVI, Book I, or
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(which comes to the same thing) upon Cor. 9, Prop. IV, of the same Book. For the versed sine of that arc, which the moon, in the space of one minute of time,
would by its mean motion describe at the distance of 60 semi-diameters of the earth, is nearly 15 1/,, Paris feet, or more accurately 15 feet, 1 inch, and 1 line

4/4. Where fore, since that force, in approaching to the earth, increases in the reciprocal duplicate proportion of the distance, and, upon that account, at the

surface of the earth, is 60 x 60 times greater than at the moon, a body in our regions, falling with that force, ought in the space of one minute of time, to
describe 60 x 60 x 151/,, Paris feet; and, in the space of one second of time, to describe 151/,, of those feet; or more accurately 15 feet, 1 inch, and 1 line 4/ o

And with this very force we actually find that bodies here upon earth do really descend; for a pendulum oscillating seconds in the latitude of Paris will be 3
Paris feet, and 8 lines %2 in length, as Mr. Huygens has observed. And the space which a heavy body describes by falling in one second of time is to half the
length of this pendulum in the duplicate ratio of the circumference of a circle to its diameter (as Mr. Huygens has also shewn), and is therefore 15 Paris feet, 1
inch, 1line 7/,. And therefore the force by which the moon is retained in its orbit becomes, at the very surface of the earth, equal to the force of gravity which

we observe in heavy bodies there. And therefore (by Rule I and II) the force by which the moon is retained in its orbit is that very same force which we
commonly call gravity; for, were gravity another force different from that, then bodies descending to the earth with the joint impulse of both forces would fall
with a double velocity, and in the space of one second of time would describe 301/ 4 Paris feet; altogether against experience.

This calculus is founded on the hypothesis of the earth's standing still; for if both earth and moon move about the sun, and at the same time about their
common centre of gravity, the distance of the centres of the moon and earth from one another will be 60%/2 semi-diameters of the earth; as may be found by a
computation from Prop. LX, Book I.

Scholium.

The demonstration of this Proposition may be more diffusely explained after the following manner. Suppose several moons to revolve about the earth, as in
the system of Jupiter or Saturn: the periodic times of these moons (by the argument of induction) would observe the same law which Kepler found to obtain
among the planets; and therefore their centripetal forces would be reciprocally as the squares of the distances from the centre of the earth, by Prop. I, of this
Book. Now if the lowest of these were very small, and were so near the earth as almost to touch the tops of the highest mountains, the centripetal force
thereof, retaining it in its orb, would be very nearly equal to the weights of any terrestrial bodies that should be found upon the tops of those mountains, as
may be known by the foregoing computation. Therefore if the same little moon should be deserted by its centrifugal force that carries it through its orb; and
so be disabled from going onward therein, it would descend to the earth; and that with the same velocity as heavy bodies do actually fall with upon the tops of
those very mountains; because of the equality of the forces that oblige them both to descend. And if the force by which that lowest moon would descend were
different from gravity, and if that moon were to gravitate towards the earth, as we find terrestrial bodies do upon the tops of mountains, it would then
descend with twice the velocity, as being impel led by both these forces conspiring together. Therefore since both these forces, that is, the gravity of heavy
bodies, and the centripetal forces of the moons, respect the centre of the earth, and are similar and equal between themselves, they will (by Rule I and II)
have one and the same cause. And therefore the force which retains the moon in its orbit is that very force which we commonly call gravity; because otherwise
this little moon at the top of a mountain must either be without gravity, or fall twice as swiftly as heavy bodies are wont to do.

Proposition v. Theorem V.

That the circumjovial planets gravitate towards Jupiter; the circumsaturnal towards Saturn; the circumsolar towards the sun; and by the forces of their
gravity are drawn off from rectilinear motions, and retained in curvilinear orbits.

For the revolutions of the circumjovial planets about Jupiter, of the circumsaturnal about Saturn, and of Mercury and Venus, and the other circumsolar
planets, about the sun, are appearances of the same sort with the revolution of the moon about the earth; and therefore, by Rule II, must be owing to the
same sort of causes; especially since it has been demonstrated, that the forces upon which those revolutions depend tend to the centres of Jupiter, of Saturn,
and of the sun; and that those forces, in receding from Jupiter, from Saturn, and from the sun, decrease in the same proportion, and according to the same
law, as the force of gravity does in receding from the earth.

Cor. 1. There is, therefore, a power of gravity tending to all the planets; for, doubtless, Venus, Mercury, and the rest, are bodies of the same sort with Jupiter
and Saturn. And since all attraction (by Law III) is mutual, Jupiter will therefore gravitate towards all his own satellites, Saturn towards his, the earth
towards the moon, and the sun towards all the primary planets.

Cor. 2. The force of gravity which tends to any one planet is reciprocally as the square of the distance of places from that planet's centre.

Cor. 3. All the planets do mutually gravitate towards one another, by Cor. 1 and 2. And hence it is that Jupiter and Saturn, when near their conjunction; by
their mutual attractions sensibly disturb each other's motions. So the sun disturbs the motions of the moon; and both sun and moon disturb our sea, as we
shall hereafter explain.

Scholium.

The force which retains the celestial bodies in their orbits has been hitherto called centripetal force; but it being now made plain that it can be no other
than a gravitating force, we shall hereafter call it gravity. For the cause of that centripetal force which retains the moon in its orbit will extend itself to all the
planets, by Rule I, II, and IV.

Proposition vi. Theorem vi.
That all bodies gravitate towards every planet; and that the weights of bodies towards any the same planet, at equal distances from the centre of the
planet, are proportional to the quantities of matter which they severally contain.

It has been, now of a long time, observed by others, that all sorts of heavy bodies (allowance being made for the inequality of retardation which they suffer
from a small power of resistance in the air) descend to the earth from equal heights in equal times; and that equality of times we may distinguish to a great
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accuracy, by the help of pendulums. I tried the thing in gold, silver, lead, glass, sand, common salt, wood, water, and wheat. I provided two wooden boxes,
round and equal: I filled the one with wood, and suspended an equal weight of gold (as exactly as I could) in the centre of oscillation of the other. The boxes
hanging by equal threads of 11 feet made a couple of pendulums perfectly equal in weight and figure, and equally receiving the resistance of the air. And,
placing the one by the other, I observed them to play together forward and backward, for a long time, with equal vibrations. And therefore the quantity of
matter in the gold (by Cor. 1 and 6, Prop. XXIV, Book II) was to the quantity of matter in the wood as the action of the motive force (or vis motrix) upon all
the gold to the action of the same upon all the wood: that is, as the weight of the one to the weight of the other: and the like happened in the other bodies. By
these experiments, in bodies of the same weight, I could manifestly have discovered a difference of matter less than the thousandth part of the whole, had any
such been. But, without all doubt, the nature of gravity towards the planets is the same as towards the earth. For, should we imagine our terrestrial bodies
removed to the orb of the moon, and there, together with the moon, deprived of all motion, to be let go, so as to fall together towards the earth, it is certain,
from what we have demonstrated before, that, in equal times, they would describe equal spaces with the moon, and of consequence are to the moon, in
quantity of matter, as their weights to its weight. Moreover, since the satellites of Jupiter perform their revolutions in times which observe the sesquiplicate
proportion of their distances from Jupiter's centre, their accelerative gravities towards Jupiter will be reciprocally as the squares of their distances from
Jupiter's centre; that is, equal, at equal distances. And, therefore, these satellites, if supposed to fall towards Jupiter from equal heights, would describe equal
spaces in equal times, in like manner as heavy bodies do on our earth. And, by the same argument, if the circumsolar planets were supposed to be let fall at
equal distances from the sun, they would, in their descent towards the sun, describe equal spaces in equal times. But forces which equally accelerate unequal
bodies must be as those bodies: that is to say, the weights of the planets towards the sun, must be as their quantities of matter. Further, that the weights of
Jupiter and of his satellites towards the sun are proportional to the several quantities of their matter, appears from the exceedingly regular motions of the
satellites (by Cor. 3, Prop. LXV, Book 1). For if some of those bodies were more strongly attracted to the sun in proportion to their quantity of matter than
others, the motions of the satellites would be disturbed by that inequality of attraction (by Cor. 2, Prop. LXV, Book I). If, at equal distances from the sun, any
satellite, in proportion to the quantity of its matter, did gravitate towards the sun with a force greater than Jupiter in proportion to his, according to any given
proportion, suppose of d to e; then the distance between the centres of the sun and of the satellite's orbit would be always greater than the distance between
the centres of the sun and of Jupiter nearly in the subduplicate of that proportion: as by some computations I have found. And if the satellite did gravitate
towards the sun with a force, lesser in the proportion of e to d, the distance of the centre of the satellite's orb from the sun would be less than the distance of
the centre of Jupiter from the sun in the subduplicate of the same proportion. Therefore if, at equal distances from the sun, the accelerative gravity of any
satellite towards the sun were greater or less than the accelerative gravity of Jupiter towards the sun but by one 1/, part of the whole gravity, the distance

of the centre of the satellite's orbit from the sun would be greater or less than the distance of Jupiter from the sun by one 1/,,,, part of the whole distance;

that is, by a fifth part of the distance of the utmost satellite from the centre of Jupiter; an eccentricity of the orbit which would be very sensible. But the orbits
of the satellites are concentric to Jupiter, and therefore the accelerative gravities of Jupiter, and of all its satellites towards the sun, are equal among
themselves. And by the same argument, the weights of Saturn and of his satellites towards the sun, at equal distances from the sun, are as their several
quantities of matter; and the weights of the moon and of the earth towards the sun are either none, or accurately proportional to the masses of matter which
they contain. But some they are, by Cor. 1 and 3, Prop. V.

But further; the weights of all the parts of every planet towards any other planet are one to another as the matter in the several parts; for if some parts did
gravitate more, others less, than for the quantity of their matter, then the whole planet, according to the sort of parts with which it most abounds, would
gravitate more or less than in proportion to the quantity of matter in the whole. Nor is it of any moment whether these parts are external or internal; for if, for
example, we should imagine the terrestrial bodies with us to be raised up to the orb of the moon, to be there compared with its body: if the weights of such
bodies were to the weights of the external parts of the moon as the quantities of matter in the one and in the other respectively; but to the weights of the
internal parts in a greater or less proportion, then likewise the weights of those bodies would be to the weight of the whole moon in a greater or less
proportion; against what we have shewed above.

Cor. 1. Hence the weights of bodies do not depend upon their forms and textures; for if the weights could be altered with the forms, they would be greater or
less, according to the variety of forms, in equal matter; altogether against experience.

Cor. 2. Universally, all bodies about the earth gravitate towards the earth; and the weights of all, at equal distances from the earth's centre, are as the
quantities of matter which they severally contain. This is the quality of all bodies within the reach of our experiments; and therefore (by Rule III) to be
affirmed of all bodies whatsoever. If the aether, or any other body, were either altogether void of gravity, or were to gravitate less in proportion to its quantity
of matter, then, because (according to Aristotle, Des Cartes, and others) there is no diiference betwixt that and other bodies but in mere form of matter, by a
successive change from form to form, it might be changed at last into a body of the same condition with those which gravitate most in proportion to their
quantity of matter; and, on the other hand, the heaviest bodies, acquiring the first form of that body, might by degrees quite lose their gravity. And therefore
the weights would depend upon the forms of bodies, and with those forms might be changed: contrary to what was proved in the preceding Corollary.

Cor. 3. All spaces are not equally full; for if all spaces were equally full, then the specific gravity of the fluid which fills the region of the air, on account of the
extreme density of the matter, would fall nothing short of the specific gravity of quicksilver, or gold, or any other the most dense body; and, therefore, neither
gold, nor any other body, could descend in air; for bodies do not descend in fluids, unless they are specifically heavier than the fluids. And if the quantity of
matter in a given space can, by any rarefaction, be diminished, what should hinder a diminution to infinity?

Cor. 4. If all the solid particles of all bodies are of the same density, nor can be rarefied without pores, a void, space, or vacuum must be granted. By bodies
of the same density, I mean those whose vires inertiae, are in the proportion of their bulks.

Cor. 5. The power of gravity is of a different nature from the power of magnetism; for the magnetic attraction is not as the matter attracted. Some bodies
are attracted more by the magnet; others less; most bodies not at all. The power of magnetism in one and the same body may be increased and diminished;
and is sometimes far stronger, for the quantity of matter, than the power of gravity; and in receding from the magnet decreases not in the duplicate but
almost in the triplicate proportion of the distance, as nearly as I could judge from some rude observations.

Proposition vii. Theorem vii.

That there is a power of gravity tending to all bodies, proportional to the several quantities of matter which they contain.

That all the planets mutually gravitate one towards another, we have proved before; as well as that the force of gravity towards every one of them,
considered apart, is reciprocally as the square of the distance of places from the centre of the planet. And thence (by Prop. LXIX, Book I, and its Corollaries) it
follows, that the gravity tending towards all the planets is proportional to the matter which they contain.
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Moreover, since all the parts of any planet A gravitate towards any other planet B; and the gravity of every part is to the gravity of the whole as the matter of
the part to the matter of the whole; and (by Law III) to every action corresponds an equal re-action; therefore the planet B will, on the other hand, gravitate
towards all the parts of the planet A; and its gravity towards any one part will be to the gravity towards the whole as the matter of the part to the matter of the
whole. Q.E.D.

Cor. 1. Therefore the force of gravity towards any whole planet arises from, and is compounded of, the forces of gravity towards all its parts. Magnetic and
electric attractions afford us examples of this; for all attraction towards the whole arises from the attractions towards the several parts. The thing may be
easily understood in gravity, if we consider a greater planet, as formed of a number of lesser planets, meeting together in one globe; for hence it would
appear that the force of the whole must arise from the forces of the component parts. If it is objected, that, according to this law, all bodies with us must
mutually gravitate one towards another, whereas no such gravitation any where appears, I answer, that since the gravitation towards these bodies is to the
gravitation towards the whole earth as these bodies are to the whole earth, the gravitation towards them must be far less than to fall under the observation of

our senses.

Cor. 2. The force of gravity towards the several equal particles of any body is reciprocally as the square of the distance of places from the particles; as
appears from Cor. 3, Prop. LXXIV, Book L.

Proposition viii. Theorem viii.

In two spheres mutually gravitating each towards the other, if the matter in places on all sides round about and equi-distant from the centres is similar,
the weight of either sphere towards the other will be reciprocally as the square of the distance between their centres.

After I had found that the force of gravity towards a whole planet did arise from and was compounded of the forces of gravity towards all its parts, and
towards every one part was in the reciprocal proportion of the squares of the distances from the part, I was yet in doubt whether that reciprocal duplicate
proportion did accurately hold, or but nearly so, in the total force compounded of so many partial ones; for it might be that the proportion which accurately
enough took place in greater distances should be wide of the truth near the surface of the planet, where the distances of the particles are unequal, and their
situation dissimilar. But by the help of Prop. LXXV and LXXVI, Book I, and their Corollaries, I was at last satisfied of the truth of the Proposition, as it now
lies before us.

Cor. 1. Hence we may find and compare together the weights of bodies towards different planets; for the weights of bodies revolving in circles about planets
are (by Cor. 2, Prop. IV, Book I) as the diameters of the circles directly, and the squares of their periodic times reciprocally; and their weights at the surfaces
of the planets, or at any other distances from their centres, are (by this Prop.) greater or less in the reciprocal duplicate proportion of the distances. Thus from
the periodic times of Venus, revolving about the sun, in 224d.16%4h, of the utmost circumjovial satellite revolving about Jupiter, in 16d.168/,:h. ; of the
Huygenian satellite about Saturn in 15d.22%5h.; and of the moon about the earth in 277d.7h.43’; compared with the mean distance of Venus from the sun, and
with the greatest heliocentric elongations of the outmost circumjovial satellite from Jupiter's centre, 8’ 16”; of the Huygenian satellite from the centre of
Saturn, 3’4"”; and of the moon from the earth, 10’33”: by computation I found that the weight of equal bodies, at equal distances from the centres of the sun,
of Jupiter, of Saturn, and of the earth, towards the sun, Jupiter, Saturn, and the earth, were one to another, as 1, 1/,46,» 1/ 3021, a0d 1/ 16928, Tespectively. Then
because as the distances are increased or diminished, the weights are diminished or increased in a duplicate ratio, the weights of equal bodies towards the
sun, Jupiter, Saturn, and the earth, at the distances 10000, 997, 791, and 109 from their centres, that is, at their very superficies, will be as 10000, 943, 529,
and 435 respectively. How much the weights of bodies are at the superficies of the moon, will be shewn hereafter.

Cor. 2. Hence likewise we discover the quantity of matter in the several planets; for their quantities of matter are as the forces of gravity at equal distances
from their centres; that is, in the sun, Jupiter, Saturn, and the earth, as 1, 1/,46;, 1/ 3021 a0d 1/,692g, respectively. If the parallax of the sun be taken greater or

less than 10” 307, the quantity of matter in the earth must be augmented or diminished in the triplicate of that proportion.

Cor. 3. Hence also we find the densities of the planets; for (by Prop. LXXII, Book I) the weights of equal and similar bodies towards similar spheres are, at
the surfaces of those spheres, as the diameters of the spheres and therefore the densities of dissimilar spheres are as those weights applied to the diameters of
the spheres. But the true diameters of the Sun, Jupiter, Saturn, and the earth, were one to another as 10000, 997, 791, and 109; and the weights towards the
same as 10000, 943, 529, and 435 respectively; and therefore their densities are as 100, 942, 67, and 400. The density of the earth, which comes out by this
computation, does not depend upon the parallax of the sun, but is determined by the parallax of the moon, and therefore is here truly defined. The sun,
therefore, is a little denser than Jupiter, and Jupiter than Saturn, and the earth four times denser than the sun; for the sun, by its great heat, is kept in a sort of
a rarefied state. The moon is denser than the earth, as shall appear afterward.

Cor. 4. The smaller the planets are, they are, caeteris paribus, of so much the greater density; for so the powers of gravity on their several surfaces come
nearer to equality. They are likewise, caeteris paribus, of the greater density, as they are nearer to the sun. So Jupiter is more dense than Saturn, and the
earth than Jupiter; for the planets were to be placed at different distances from the sun, that, according to their degrees of density, they might enjoy a greater
or less proportion to the sun's heat. Our water, if it were removed as far as the orb of Saturn, would be converted into ice, and in the orb of Mercury would
quickly fly away in vapour; for the light of the sun, to which its heat is proportional, is seven times denser in the orb of Mercury than with us: and by the
thermometer I have found that a sevenfold heat of our summer sun will make water boil. Nor are we to doubt that the matter of Mercury is adapted to its heat,
and is therefore more dense than the matter of our earth; since, in a denser matter, the operations of Nature require a stronger heat.

Proposition ix. Theorem ix.

That the force of gravity, considered downward from the surface of the planets, decreases nearly in the proportion of the distances from their centres.

If the matter of the planet were of an uniform density, this Proposition would be accurately true (by Prop. LXXIII. Book I). The error, therefore, can be no
greater than what may arise from the inequality of the density.

Proposition x. Theorem X.
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That the motions of the planets in the heavens may subsist an exceedingly long time.

In the Scholium of Prop. XL, Book II, I have shewed that a globe of water frozen into ice, and moving freely in our air, in the time that it would describe the
length of its semi-diameter, would lose by the resistance of the air 1/,.4¢ part of its motion; and the same proportion holds nearly in all globes, how great
soever, and moved with whatever velocity. But that our globe of earth is of greater density than it would be if the whole consisted of water only, I thus make
out. If the whole consisted of water only, whatever was of less density than water, because of its less specific gravity, would emerge and float above. And upon
this account, if a globe of terrestrial matter, covered on all sides with water, was less dense than water, it would emerge somewhere; and, the subsiding water
falling back, would be gathered to the opposite side. And such is the condition of our earth, which in a great measure is covered with seas. The earth, if it was
not for its greater density, would emerge from the seas, and, according to its degree of levity, would be raised more or less above their surface, the water of
the seas flowing backward to the opposite side. By the same argument, the spots of the sun, which float upon the lucid matter thereof, are lighter than that
matter; and, however the planets have been formed while they were yet in fluid masses, all the heavier matter subsided to the centre. Since, therefore, the
common matter of our earth on the surface thereof is about twice as heavy as water, and a little lower, in mines, is found about three, or four, or even five
times more heavy, it is probable that the quantity of the whole matter of the earth may be five or six times greater than if it consisted all of water; especially
since I have before shewed that the earth is about four times more dense than Jupiter. If, therefore, Jupiter is a little more dense than water, in the space of
thirty days, in which that planet describes the length of 459 of its semi-diameters, it would, in a medium of the same density with our air, lose almost a tenth
part of its motion. But since the resistance of mediums decreases in proportion to their weight or density, so that water, which is 13 3/ times lighter than
quicksilver, resists less in that proportion; and air, which is 860 times lighter than water, resists less in the same proportion; therefore in the heavens, where
the weight of the medium in which the planets move is immensely diminished, the resistance will almost vanish.

It is shewn in the Scholium of Prop. XXII, Book II, that at the height of 200 miles above the earth the air is more rare than it is at the superficies of the earth
in the ratio of 30 to 0,0000000000003998, or as 75000000000000 to 1 nearly. And hence the planet Jupiter, revolving in a medium of the same density
with that superior air, would not lose by the resistance of the medium the 1000000th part of its motion in 1000000 years. In the spaces near the earth the
resistance is produced only by the air, exhalations, and vapours. When these are carefully exhausted by the air-pump from under the receiver, heavy bodies
fall within the receiver with perfect freedom, and without the least sensible resistance: gold itself, and the lightest down, let fall together, will descend with
equal velocity; and though they fall through a space of four, six, and eight feet, they will come to the bottom at the same time; as appears from experiments.
And therefore the celestial regions being perfectly void of air and exhalations, the planets and comets meeting no sensible resistance in those spaces will
continue their motions through them for an immense tract of time.

Hypothesis 1.

That the centre of the system of the world is immovable.

This is acknowledged by all, while some contend that the earth, others that the sun, is fixed in that centre. Let us see what may from hence follow.

Proposition xi. Theorem xi.

That the common centre of gravity of the earth, the sun, and all the planets, is immovable.

For (by Cor. 4 of the Laws) that centre either is at rest, or moves uniformly forward in a right line; but if that centre moved, the centre of the world would
move also, against the Hypothesis.

Proposition xii. Theorem xii.

That the sun is agitated by a perpetual motion, but never recedes far from the common centre of gravity of all the planets.

For since (by Cor. 2, Prop. VIII) the quantity of matter in the sun is to the quantity of matter in Jupiter as 1067 to 1; and the distance of Jupiter from the
sun is to the semi-diameter of the sun in a proportion but a small matter greater, the common centre of gravity of Jupiter and the sun will fall upon a point a
little without the surface of the sun. By the same argument, since the quantity of matter in the sun is to the quantity of matter in Saturn as 3021 to 1, and the
distance of Saturn from the sun is to the semi-diameter of the sun in a proportion but a small matter less, the common centre of gravity of Saturn and the sun
will fall upon a point a little within the surface of the sun. And, pursuing the principles of this computation, we should find that though the earth and all the
planets were placed on one side of the sun, the distance of the common centre of gravity of all from the centre of the sun would scarcely amount to one
diameter of the sun. In other cases, the distances of those centres are always less; and therefore, since that centre of gravity is in perpetual rest, the sun,
according to the various positions of the planets, must perpetually be moved every way, but will never recede far from that centre.

Cor. Hence the common centre of gravity of the earth, the sun, and all the planets, is to be esteemed the centre of the world; for since the earth, the sun, and
all the planets, mutually gravitate one towards another, and are therefore, according to their powers of gravity, in perpetual agitation, as the Laws of Motion
require, it is plain that their moveable centres can not be taken for the immovable centre of the world. If that body were to be placed in the centre, towards
which other bodies gravitate most (according to common opinion), that privilege ought to be allowed to the sun; but since the sun itself is moved, a fixed
point is to be chosen from which the centre of the sun recedes least, and from which it would recede yet less if the body of the sun were denser and greater,
and therefore less apt to be moved.

Proposition xiii. Theorem xiii.
The planets move in ellipses which have their common focus in the centre of the sun; and, by radii drawn to that centre, they describe areas proportional to
the times of description.

We have discoursed above of these motions from the Phaenomena. Now that we know the principles on which they depend, from those principles we
deduce the motions of the heavens a priori. Because the weights of the planets towards the sun are reciprocally as the squares of their distances from the
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sun's centre, if the sun was at rest, and the other planets did not mutually act one upon another, their orbits would be ellipses, having the sun in their
common focus; and they would describe areas proportional to the times of description, by Prop, I and XI, and Cor. 1, Prop. XIII, Book I. But the mutual
actions of the planets one upon another are so very small, that they may be neglected; and by Prop. LXVI, Book I, they less disturb the motions of the planets
around the sun in motion than if those motions were performed about the sun at rest.

It is true, that the action of Jupiter upon Saturn is not to be neglected; for the force of gravity towards Jupiter is to the force of gravity towards the sun (at
equal distances, Cor. 2, Prop. VIII) as 1 to 1067; and therefore in the conjunction of Jupiter and Saturn, because the distance of Saturn from Jupiter is to the
distance of Saturn from the sun almost as 4 to 9, the gravity of Saturn towards Jupiter will be to the gravity of Saturn towards the sun as 81 to 16 x 1067; or,
as 1 to about 211. And hence arises a perturbation of the orb of Saturn in every conjunction of this planet with Jupiter, so sensible, that astronomers are
puzzled with it. As the planet is differently situated in these conjunctions, its eccentricity is sometimes augmented, sometimes diminished; its aphelion is
sometimes carried forward, sometimes backward, and its mean motion is by turns accelerated and retarded; yet the whole error in its motion about the sun,
though arising from so great a force, may be almost avoided (except in the mean motion) by placing the lower focus of its orbit in the common centre of
gravity of Jupiter and the sun (according to Prop. LXVII, Book I), and therefore that error, when it is greatest, scarcely exceeds two minutes; and the greatest
error in the mean motion scarcely exceeds two minutes yearly. But in the conjunction of Jupiter and Saturn, the accelerative forces of gravity of the sun

d16x 81x 3021
2

towards Saturn, of Jupiter towards Saturn, and of Jupiter towards the sun, are almost as 16,81, an ; or 156609: and therefore the difference of

the forces of gravity of the sun towards Saturn, and of Jupiter towards Saturn, is to the force of gravity of Jupiter towards the sun as 65 to 156609, or as 1 to
2409. But the greatest power of Saturn to disturb the motion of Jupiter is proportional to this difference; and therefore the perturbation of the orbit of
Jupiter is much less than that of Saturn's. The perturbations of the other orbits are yet far less, except that the orbit of the earth is sensibly disturbed by the
moon. The common centre of gravity of the earth and moon moves in an ellipsis about the sun in the focus thereof, and, by a radius drawn to the sun,
describes areas proportional to the times of description. But the earth in the mean time by a menstrual motion is revolved about this common centre.

Proposition xiv. Theorem xiv.

The aphelions and nodes of the orbits of the planets are fixed.

The aphelions are immovable by Prop. XI, Book I; and so are the planes of the orbits, by Prop. I of the same Book. And if the planes are fixed, the nodes
must be so too. It is true, that some inequalities may arise from the mutual actions of the planets and comets in their revolutions; but these will be so small,
that they may be here passed by.

Cor. 1. The fixed stars are immovable, seeing they keep the same position to the aphelions and nodes of the planets.

Cor. 2. And since these stars are liable to no sensible parallax from the annual motion of the earth, they can have no force, because of their immense
distance, to produce any sensible effect in our system. Not to mention that the fixed stars, every where promiscuously dispersed in the heavens, by their
contrary attractions destroy their mutual actions, by Prop. LXX, Book I.

Scholium.

Since the planets near the sun (viz. Mercury, Venus, the Earth, and Mars) are so small that they can act with but little force upon each other, therefore their
aphelions and nodes must be fixed, excepting in so far as they are disturbed by the actions of Jupiter and Saturn, and other higher bodies. And hence we may
find, by the theory of gravity, that their aphelions move a little in consequentia, in respect of the fixed stars, and that in the sesquiplicate proportion of their
several distances from the sun. So that if the aphelion of Mars, in the space of a hundred years, is carried 33’ 20” in consequentia, in respect of the fixed stars;
the aphelions of the Earth, of Venus, and of Mercury, will in a hundred years be carried forwards 17’ 40”, 10’ 53”, and 4’ 16”, respectively. But these motions
are so inconsiderable, that we have neglected them in this Proposition,

Proposition xv. Problem I.

To find the principal diameters of the orbits of the planets.

They are to be taken in the sub-sesquiplicate proportion of the periodic times, by Prop. XV, Book I, and then to be severally augmented in the proportion of
the sum of the masses of matter in the sun and each planet to the first of two mean proportionals betwixt that sum and the quantity of matter in the sun, by
Prop. LX, Book I.

Proposition xvi. Problem ii.

To find the eccentricities and aphelions of the planets.

This Problem is resolved by Prop. XVIII, Book I.

Proposition xvii. Theorem xv.

That the diurnal motions of the planets are uniform, and that the libration of the moon arises from its diurnal motion.

The Proposition is proved from the first Law of Motion, and Cor. 22, Prop. LXVI, Book 1. Jupiter, with respect to the fixed stars, revolves in gh.56’; Mars in
24h.39’; Venus in about 23h.; the Earth in 23h.56’; the Sun in 25Y2 days, and the moon in 27 days, 7 hours, 43’. These things appear by the Phaenomena. The
spots in the sun's body return to the same situation on the sun's disk, with respect to the earth, in 27%2 days; and therefore with respect to the fixed stars the
sun revolves in about 252 days. But because the lunar day, arising from its uniform revolution about its axis, is menstrual, that is, equal to the time of its
periodic revolution in its orb, therefore the same face of the moon will be always nearly turned to the upper focus of its orb; but, as the situation of that focus
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requires, will deviate a little to one side and to the other from the earth in the lower focus; and this is the libration in longitude; for the libration in latitude
arises from the moon's latitude, and the inclination of its axis to the plane of the ecliptic. This theory of the libration of the moon, Mr. N. Mercator in his
Astronomy, published at the beginning of the year 1676, explained more fully out of the letters I sent him. The utmost satellite of Saturn seems to revolve
about its axis with a motion like this of the moon, respecting Saturn continually with the same face; for in its revolution round Saturn, as often as it comes to
the eastern part of its orbit, it is scarcely visible, and generally quite disappears; which is like to be occasioned by some spots in that part of its body, which is
then turned towards the earth, as M. Cassini has observed. So also the utmost satellite of Jupiter seems to revolve about its axis with a like motion, because in
that part of its body which is turned from Jupiter it has a spot, which always appears as if it were in Jupiter's own body, whenever the satellite passes between
Jupiter and our eye.

Proposition xviii. Theorem xvi.

That the axes of the planets are less than the diameters drawn perpendicular to the axes.

The equal gravitation of the parts on all sides would give a spherical figure to the planets, if it was not for their diurnal revolution in a circle. By that circular
motion it comes to pass that the parts receding from the axis endeavour to ascend about the equator; and therefore if the matter is in a fluid state, by its
ascent towards the equator it will enlarge the diameters there, and by its descent towards the poles it will shorten the axis. So the diameter of Jupiter (by the
concurring observations of astronomers) is found shorter betwixt pole and pole than from east to west. And, by the same argument, if our earth was not
higher about the equator than at the poles, the seas would subside about the poles, and, rising towards the equator, would lay all things there under water.

Proposition xix. Problem iii.

To find the proportion of the axis of a planet to the diameter, perpendicular thereto.

Our countryman, Mr. Norwood, measuring a distance of 905751 feet of London measure between London and York, in 1635, and observing the difference
of latitudes to be 2° 28’, determined the measure of one degree to be 367196 feet of London measure, that is 57300 Paris toises. M. Picart, measuring an arc
of one degree, and 22’ 55” of the meridian between Amiens and Malvoisine, found an arc of one degree to be 57060 Paris toises. M. Cassini, the father,
measured the distance upon the meridian from the town of Collioure in Roussillon to the Observatory of Paris; and his son added the distance from the
Observatory to the Citadel of Dunkirk. The whole distance was 486156Y2 toises and the difference of the latitudes of Collioure and Dunkirk was 8 degrees,
and 31'115/4”. Hence an arc of one degree appears to be 57061 Paris toises. And from these measures we conclude that the circumference of the earth is

123249600, and its semi-diameter 19615800 Paris feet, upon the supposition that the earth is of a spherical figure.

In the latitude of Paris a heavy body falling in a second of time describes 15 Paris feet, 1 inch, 17/, line, as above, that is, 2173 lines 7/,. The weight of the
body is diminished by the weight of the ambient air. Let us suppose the weight lost thereby to be 1/,,,,, part of the whole weight; then that heavy body falling

in vacua will describe a height of 2174 lines in one second of time.

A body in every sidereal day of 23h.56’4” uniformly revolving in a circle at the distance of 19615800 feet from the centre, in one second of time describes an
arc of 1433,46 feet; the versed sine of which is 0,05236561 feet, or 7,54064 lines. And therefore the force with which bodies descend in the latitude of Paris is
to the centrifugal force of bodies in the equator arising from the diurnal motion of the earth as 2174 to 7,54064.

The centrifugal force of bodies in the equator is to the centrifugal force with which bodies recede directly from the earth in the latitude of Paris 48° 50’ 10”
in the duplicate proportion of the radius to the cosine of the latitude, that is, as 7,54064 to 3,267. Add this force to the force with which bodies descend by
their weight in the latitude of Paris, and a body, in the latitude of Paris, falling by its whole undiminished force of gravity, in the time of one second, will
describe 2177,267 lines, or 15 Paris feet, 1inch, and 5,267 lines. And the total force of gravity in that latitude will be to the centrifugal force of bodies in the
equator of the earth as 2177,267 to 7,54064, or as 289 to 1.

Ad Wherefore if APBQ represent the figure of the earth, now no longer spherical, but generated by the rotation of an ellipsis about its
lesser axis PQ; and ACQgca a canal full of water, reaching from the pole Qq to the centre Cc, and thence rising to the equator Aa; the
weight of the water in the leg of the canal ACca will be to the weight of water in the other leg QCcq as 289 to 288, because the

P centrifugal force arising from the circular motion sustains and takes off one of the 289 parts of the weight (in the one leg), and the
weight of 288 in the other sustains the rest. But by computation (from Cor. 2, Prop. XCI, Book I) I find, that, if the matter of the earth
was all uniform, and without any motion, and its axis PQ were to the diameter AB as 100 to 101, the force of gravity in the place Q
towards the earth would be to the force of gravity in the same place Q towards a sphere described about the centre C with the radius
PC, or QC, as 126 to 125. And, by the same argument, the force of gravity in the place A towards the spheroid generated by the
rotation of the ellipsis APBQ about the axis AB is to the force of gravity in the same place A, towards the sphere described about the centre C with the radius
AC, as 125 to 126. But the force of gravity in the place A towards the earth is a mean proportional betwixt the forces of gravity towards the spheroid and this

B

sphere; because the sphere, by having its diameter PQ diminished in the proportion of 101 to 100, is transformed into the figure of the earth; and this figure,
by having a third diameter perpendicular to the two diameters AB and PQ diminished in the same proportion, is converted into the said spheroid; and the
force of gravity in A, in either case, is diminished nearly in the same proportion. Therefore the force of gravity in A towards the sphere described about the
centre C with the radius AC, is to the force of gravity in A towards the earth as 126 to 125%2. And the force of gravity in the place Q towards the sphere
described about the centre C with the radius QC, is to the force of gravity in the place A towards the sphere described about the centre C, with the radius AC, in
the proportion of the diameters (by Prop. LXXII, Book I), that is, as 100 to 101. If, therefore, we compound those three proportions 126 to 125, 126 to 1252,
and 100 to 101, into one, the force of gravity in the place Q towards the earth will be to the force of gravity in the place A towards the earth as 126 x 126 x 100
to 125 x 125%2 x 101; or as 501 to 500.

Now since (by Cor. 3, Prop. XCI, Book I) the force of gravity in either leg of the canal ACca, or QCcq, is as the distance of the places from the centre of the
earth, if those legs are conceived to be divided by transverse, parallel, and equidistant surfaces, into parts proportional to the wholes, the weights of any
number of parts in the one leg ACca will be to the weights of the same number of parts in the other leg as their magnitudes and the accelerative forces of their
gravity conjunctly, that is, as 101 to 100, and 500 to 501, or as 505 to 501. And therefore if the centrifugal force of every part in the leg ACca, arising from the
diurnal motion, was to the weight of the same part as 4 to 505, so that from the weight of every part, conceived to be divided into 505 parts, the centrifugal
force might take off four of those parts, the weights would remain equal in each leg, and therefore the fluid would rest in an equilibrium. But the centrifugal
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force of every part is to the weight of the same part as 1 to 289; that is, the centrifugal force, which should be 4/5; parts of the weight, is only1/,g, part
thereof. And, therefore, I say, by the rule of proportion, that if the centrifugal force 4/, make the height of the water in the leg ACca to exceed the height of
the water in the leg QCcq by one 1/, part of its whole height, the centrifugal force 1/,g, will make the excess of the height in the leg ACca only 1/,g, part of

the height of the water in the other leg QCcq; and therefore the diameter of the earth at the equator, is to its diameter from pole to pole as 230 to 229. And
since the mean semi-diameter of the earth, according to Picart's mensuration, is 19615800 Paris feet, or 3923,16 miles (reckoning 5000 feet to a mile), the
earth will be higher at the equator than at the poles by 85472 feet, or 171/,, miles. And its height at the equator will be about 19658600 feet, and at the poles

19573000 feet.

If, the density and periodic time of the diurnal revolution remaining the same, the planet was greater or less than the earth, the proportion of the
centrifugal force to that of gravity, and therefore also of the diameter betwixt the poles to the diameter at the equator, would likewise remain the same. But if
the diurnal motion was accelerated or retarded in any proportion, the centrifugal force would be augmented or diminished nearly in the same duplicate
proportion; and therefore the difference of the diameters will be increased or diminished in the same duplicate ratio very nearly. And if the density of the
planet was augmented or diminished in any proportion, the force of gravity tending towards it would also be augmented or diminished in the same
proportion: and the difference of the diameters contrariwise would be diminished in proportion as the force of gravity is augmented, and augmented in
proportion as the force of gravity is diminished. Wherefore, since the earth, in respect of the fixed stars, revolves in 23h.56’, but Jupiter in gh.56’, and the
squares of their periodic times are as 29 to 5, and their densities as 400 to 942, the difference of the diameters of Jupiter will be to its lesser diameter as

29

95 4)1( /‘%1 to 1, or as 1 to 9¥3, nearly. Therefore the diameter of Jupiter from east to west is to its diameter from pole to pole nearly as 105 to 9%5. Therefore
2

22,
sincegits greatest diameter is 37", its lesser diameter lying between the poles will be 33” 25”. Add thereto about 3” for the irregular refraction of light, and the
apparent diameters of this planet will become 40” and 36” 25”; which areto each other as 111/¢ to 101/4, very nearly. These things are so upon the
supposition that the body of Jupiter is uniformly dense. But now if its body be denser towards the plane of the equator than towards the poles, its diameters
may be to each other as 12 to 11, or 13 to 12, or perhaps as 14 to 13.

And Cassini observed in the year 1691, that the diameter of Jupiter reaching from east to west is greater by about a fifteenth part than the other diameter.
Mr. Pound with his 123 feet telescope, and an excellent micrometer, measured the diameters of Jupiter in the year 1719, and found them as follow.

3 Greatest Lesser The diam. to each
The Times. . p
diam. diam. other.
Day. : Hours : Parts Parts

January : 28 6 13,40 12,28 As 12 to 11
March 6 7 13,12 12,20 As 133% to 1234
March 9 7 13,12 12,08 As 12% to 1%
April 9 9 12,32 11,48 As 14¥2 to 132

So that the theory agrees with the phaenomena; for the planets are more heated by the sun's rays towards their equators, and therefore are a little more
condensed by that heat than towards their poles.

Moreover, that there is a diminution of gravity occasioned by the diurnal rotation of the earth, and therefore the earth rises higher there than it does at the
poles (supposing that its matter is uniformly dense), will appear by the experiments of pendulums related under the following Proposition.

Proposition xx. Problem iv.

To find and compare together the weights of bodies in the different regions of our earth.

Because the weights of the unequal legs of the canal of water ACQqca are equal; and the weights of the parts proportional to the whole A
legs, and alike situated in them, are one to another as the weights of the wholes, and therefore equal betwixt themselves; the weights of
equal parts, and alike situated in the legs, will be reciprocally as the legs, that is, reciprocally as 230 to 229. And the case is the same in
all homogeneous equal bodies alike situated in the legs of the canal. Their weights are reciprocally as the legs, that is, reciprocally as the
distances of the bodies from the centre of the earth. Therefore if the bodies are situated in the uppermost parts of the canals, or on the
surface of the earth, their weights will be one to another reciprocally as their distances from the centre. And, by the same argument, the
weights in all other places round the whole surface of the earth are reciprocally as the distances of the places from the centre; and,

therefore, in the hypothesis of the earth's being a spheroid are given in proportion. B

Whence arises this Theorem, that the increase of weight in passing from the equator to the poles is nearly as the versed sine of double the latitude; or,
which comes to the same thing, as the square of the right sine of the latitude; and the arcs of the degrees of latitude in the meridian increase nearly in the
same proportion. And, therefore, since the latitude of Paris is 48° 50’, that of places under the equator 00° 00’, and that of places under the poles 90°; and
the versed sines of double those arcs are 11334,00000 and 20000, the radius being 10000; and the force of gravity at the pole is to the force of gravity at the
equator as 230 to 229; and the excess of the force of gravity at the pole to the force of gravity at the equator as 1 to 229; the excess of the force of gravity in the
latitude of Paris will be to the force of gravity at the equator as 1 x 11334/ 40, t0 229, or as 5667 to 2290000. And therefore the whole forces of gravity in those

places will be one to the other as 2295667 to 2290000. Wherefore since the lengths of pendulums vibrating in equal times are as the forces of gravity, and in
the latitude of Paris, the length of a pendulum vibrating seconds is 3 Paris feet, and 82 lines, or rather because of the weight of the air, 85/, lines, the length

of a pendulum vibrating in the same time under the equator will be shorter by 1,087 lines. And by a like calculus the following table is made.
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Latitude of : Length of the Measure of one
the place pendulum degree
) in the meridian.

Deg. Feet Lines Toises.
o 3 7,468 56637
5 3 7,482 56642
10 3 7,526 56659
15 3 7,596 56687
20 3 7,692 56724
25 3 7,812 56769
30 3 7,948 56823
35 3 8,099 56882
40 3 8,261 56945
1 3 8,294 56958
2 3 8,327 56971
3 3 8,361 56984
4 3 8,394 56997
45 3 8,428 57010
6 3 8,461 57022
7 3 8,494 57035
8 3 8,528 57048
9 3 8,561 57061
50 3 8,594 57074
55 3 8,756 57137
60 3 8,907 57196
65 3 9,044 57250
70 3 9,162 57295
75 3 9,258 57332
8o 3 9,329 57360
85 3 9,372 57377
90 3 9,387 57382

By this table, therefore, it appears that the inequality of degrees is so small, that the figure of the earth, in geographical matters, may be considered as
spherical; especially if the earth be a little denser towards the plane of the equator than towards the poles.

Now several astronomers, sent into remote countries to make astronomical observations, have found that pendulum clocks do accordingly move slower
near the equator than in our climates. And, first of all, in the year 1672, M. Richer took notice of it in the island of Cayenne; for when, in the month of August,
he was observing the transits of the fixed stars over the meridian, he found his clock to go slower than it ought in respect of the mean motion of the sun at the
rate of 2’ 28” a day. Therefore, fitting up a simple pendulum to vibrate in seconds, which were measured by an excellent clock, he observed the length of that
simple pendulum; and this he did over and over every week for ten months together. And upon his re turn to France, comparing the length of that pendulum
with the length of the pendulum at Paris (which was 3 Paris feet and 83/, lines), he found it shorter by 1V line.

Afterwards, our friend Dr. Halley, about the year 1677, arriving at the island of St. Helena, found his pendulum clock to go slower there than at London
without marking the difference. But he shortened the rod of his clock by more than the 1/g of an inch, or 12 line; and to effect this, be cause the length of the

screw at the lower end of the rod was not sufficient, he interposed a wooden ring betwixt the nut and the ball.

Then, in the year 1682, M. Varin and M. des Hayes found the length of a simple pendulum vibrating in seconds at the Royal Observatory of Paris to be 3
feet and 85/, lines. And by the same method in the island of Goree, they found the length of an isochronal pendulum to be 3 feet and 65/ lines, differing
from the former by two lines. And in the same year, going to the islands of Guadaloupe and Martinico, they found that the length of an isochronal pendulum
in those islands was 3 feet and 6Y2 lines.

After this, M. Couplet, the son, in the month of July 1697, at the Royal Observatory of Paris, so fitted his pendulum clock to the mean motion of the sun,
that for a considerable time together the clock agreed with the motion of the sun. In November following, upon his arrival at Lisbon, he found his clock to go
slower than before at the rate of 2’ 13” in 24 hours. And next March coming to Paraiba, he found his clock to go slower than at Paris, and at the rate 4’ 12” in
24 hours; and he affirms, that the pendulum vibrating in seconds was shorter at Lisbon by 2V2 lines, and at Paraiba, by 3% lines, than at Paris. He had done
better to have reckoned those differences 1% and 25/ : for these differences correspond to the differences of the times 2’ 13” and 4’ 12”. But this gentleman's

observations are so gross, that we cannot confide in them.

In the following years, 1699, and 1700, M. des Hayes, making another voyage to America, determined that in the island of Cayenne and Granada the
length of the pendulum vibrating in seconds was a small matter less than 3 feet and 62 lines; that in the island of St. Christophers it was 3 feet and 634 lines;
and in the island of St. Domingo 3 feet and 7 lines.

And in the year 1704, P. Feuillé, at Puerto Bello in America, found that the length of the pendulum vibrating in seconds was 3 Paris feet, and only 57/,,

lines, that is, almost 3 lines shorter than at Paris; but the observation was faulty. For afterward, going to the island of Martinico, he found the length of the
isochronal pendulum there 3 Paris feet and 510/, lines.

Now the latitude of Paraiba is 6° 38’ south; that of Puerto Bello 9° 33’ north; and the latitudes of the islands Cayenne, Goree, Gaudaloupe, Martinico,
Granada, St. Christophers, and St. Domingo, are respectively 4° 55’, 14° 40”, 15° 00’, 14° 44/, 12° 06’, 17° 19’, and 19° 48’, north. And the excesses of the
length of the pendulum at Paris above the lengths of the isochronal pendulums observed in those latitudes are a little greater than by the table of the lengths
of the pendulum before computed. And therefore the earth is a little higher under the equator than by the preceding calculus, and a little denser at the centre
than in mines near the su face, unless, perhaps, the heats of the torrid zone have a little extended the length of the pendulums.

For M. Picart has observed, that a rod of iron, which in frosty weather in the winter season was one foot long, when heated by fire, was lengthened into one
foot and ¥4 line. Afterward M. de la Hire found that a rod of iron, which in the like winter season was 6 feet long, when exposed to the heat of the summer
sun, was extended into 6 feet and %5 line. In the former case the heat was greater than in the latter; but in the latter it was greater than the heat of the external
parts of a human body; for metals exposed to the summer sun acquire a very considerable degree of heat. But the rod of a pendulum clock is never exposed to
the heat of the summer sun, nor ever acquires a heat equal to that of the external parts of a human body; and, therefore, though the 3 feet rod of a pendulum
clock will indeed be a little longer in the summer than in the winter season, yet the difference will scarcely amount to ¥4 line. Therefore the total difference of
the lengths of isochronal pendulums in different climates cannot be ascribed to the difference of heat; nor indeed to the mistakes of the French astronomers.
For although there is not a perfect agreement betwixt their observations, yet the errors are so small that they may be neglected; and in this they all agree, that
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isochronal pendulums are shorter under the equator than at the Royal Observatory of Paris, by a difference not less than 1% line, nor greater than 2% lines.
By the observations of M. Richer, in the island of Cayenne, the difference was 1% line. That difference being corrected by those of M. des Hayes, becomes
1Y2 line or 134 line. By the less accurate observations of others, the same was made about two lines. And this dis agreement might arise partly from the errors
of the observations, partly from the dissimilitude of the internal parts of the earth, and the height of mountains; partly from the different heats of the air.

I take an iron rod of 3 feet long to be shorter by a sixth part of one line in winter time with us here in England than in the summer. Because of the great
heats under the equator, subduct this quantity from the difference of one line and a quarter observed by M. Richer, and there will remain one line 1/,,, which

agrees very well with 187/, ., line collected, by the theory a little before. M. Richer repeated his observations, made in the island of Cayenne, every week for

ten months together, and compared the lengths of the pendulum which he had there noted in the iron rods with the lengths thereof which he observed in
France. This diligence and care seems to have been wanting to the other observers. If this gentleman's observations are to be depended on, the earth is higher
under the equator than at the poles, and that by an excess of about 17 miles; as appeared above by the theory.

Proposition xxi. Theorem xvii.

That the equinoctial points go backward, and that the axis of the earth, by a nutation in every annual revolution, twice vibrates towards the ecliptic, and
as often returns to its former position.

The proposition appears from Cor. 20, Prop. LXVI, Book I; but that motion of nutation must be very small, and, indeed, scarcely perceptible.

Proposition xxii. Theorem xviii.

That all the motions of the moon, and all the inequalities of those motions, follow from the principles which we have laid down.

That the greater planets, while they are carried about the sun, may in the mean time carry other lesser planets, revolving about them; and that those lesser
planets must move in ellipses which have their foci in the centres of the greater, appears from Prop. LXV, Book I. But then their motions will be several ways
disturbed by the action of the sun, and they will suffer such inequalities as are observed in our moon. Thus our moon (by Cor. 2, 3, 4, and 5, Prop. LXVI, Book
1) moves faster, and, by a radius drawn to the earth, describes an area greater for the time, and has its orbit less curved, and therefore approaches nearer to
the earth in the syzygies than in the quadratures, excepting in so far as these effects are hindered by the motion of eccentricity; for (by Cor. 9, Prop. LXVI,
Book I) the eccentricity is greatest when the apogeon of the moon is in the syzygies, and least when the same is in the quadratures; and upon this account the
perigeon moon is swifter, and nearer to us, but the apogeon moon slower, and farther from us, in the syzygies than in the quadratures. Moreover, the apogee
goes forward, and the nodes backward; and this is done not with a regular but an unequal motion. For (by Cor. 7 and 8, Prop. LXVI, Book I) the apogee goes
more swiftly forward in its syzygies, more slowly backward in its quadratures; and, by the excess of its progress above its regress, advances yearly in
consequentia. But, contrariwise, the nodes (by Cor. 11, Prop. LXVI, Book I) are quiescent in their syzygies, and go fastest back in their quadratures. Farther,
the greatest latitude of the moon (by Cor. 10, Prop. LXVI, Book I) is greater in the quadratures of the moon than in its syzygies. And (by Cor. 6, Prop. LXVI,
Book I) the mean motion of the moon is slower in the perihelion of the earth than in its aphelion. And these are the principal inequalities (of the moon) taken
notice of by astronomers.

But there are yet other inequalities not observed by former astronomers, by which the motions of the moon are so disturbed, that to this day we have not
been able to bring them under any certain rule. For the velocities or horary motions of the apogee and nodes of the moon, and their equations, as well as the
difference betwixt the greatest eccentricity in the syzygies, and the least eccentricity in the quadratures, and that inequality which we call the variation, are (by
Cor. 14, Prop. LXVI, Book I) in the course of the year augmented and diminished in the triplicate proportion of the sun's apparent diameter. And besides (by
Cor. 1 and 2, Lem. 10, and Cor. 16, Prop. LXVI, Book I) the variation is augmented and diminished nearly in the duplicate proportion of the time between the
quadratures. But in astronomical calculations, this inequality is commonly thrown into and confounded with the equation of the moon's centre.

Proposition xxiii. Problem V.

To derive the unequal motions of the satellites of Jupiter and Saturn from the motions of our moon.

From the motions of our moon we deduce the corresponding motions of the moons or satellites of Jupiter in this manner, by Cor. 16, Prop. LXVI, Book I.
The mean motion of the nodes of the outmost satellite of Jupiter is to the mean motion of the nodes of our moon in a proportion compounded of the
duplicate proportion of the periodic times of the earth about the sun to the periodic times of Jupiter about the sun, and the simple proportion of the periodic
time of the satellite about Jupiter to the periodic time of our moon about the earth; and, therefore, those nodes, in the space of a hundred years, are carried 8°
24’ backward, or in antecedentia. The mean motions of the nodes of the inner satellites are to the mean motion of the nodes of the outmost as their periodic
times to the periodic time of the former, by the same Corollary, and are thence given. And the motion of the apsis of every satellite in consequentia is to the
motion of its nodes in antecedentia as the motion of the apogee of our moon to the motion of its nodes (by the same Corollary), and is thence given. But the
motions of the apsides thus found must be diminished in the proportion of 5 to 9, or of about 1 to 2, on account of a cause which I cannot here descend to
explain. The greatest equations of the nodes, and of the apsis of every satellite, are to the greatest equations of the nodes, and apogee of our moon
respectively, as the motions of the nodes and apsides of the satellites, in the time of one revolution of the former equations, to the motions of the nodes and
apogee of our moon, in the time of one revolution of the latter equations. The variation of a satellite seen from Jupiter is to the variation of our moon in the
same proportion as the whole motions of their nodes respectively during the times in which the satellite and our moon (after parting from) are revolved
(again) to the sun, by the same Corollary; and therefore in the outmost satellite the variation does not exceed 5” 12”.

Proposition xxiv. Theorem xix.

That the flux and reflux of the sea arise from the actions of the sun and moon.

By Cor. 19 and 20, Prop. LXVI, Book I, it appears that the waters of the sea ought twice to rise and twice to fall every day, as well lunar as solar; and that
the greatest height of the waters in the open and deep seas ought to follow the appulse of the luminaries to the meridian of the place by a less interval than 6
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hours; as happens in all that eastern tract of the Atlantic and AEthiopic seas between France and the Cape of Good Hope; and on the coasts of Chili and Peru,
in the South Sea; in all which shores the flood falls out about the second, third, or fourth hour, unless where the motion propagated from the deep ocean is by
the shallowness of the channels, through which it passes to some particular places, retarded to the fifth, sixth, or seventh hour, and even later. The hours I
reckon from the appulse of each luminary to the meridian of the place; as well under as above the horizon; and by the hours of the lunar day I understand the
24th parts of that time which the moon, by its apparent diurnal motion, employs to come about again to the meridian of the place which it left the day before.
The force of the sun or moon in raising the sea is greatest in the appulse of the luminary to the meridian of the place; but the force impressed upon the sea at
that time continues a little while after the impression, and is afterwards increased by a new though less force still acting upon it. This makes the sea rise
higher and higher, till this new force becoming too weak to raise it any more, the sea rises to its greatest height. And this will come to pass, perhaps, in one or
two hours, but more frequently near the shores in about three hours, or even more, where the sea is shallow.

The two luminaries excite two motions, which will not appear distinctly, but between them will arise one mixed motion compounded out of both. In the
conjunction or opposition of the luminaries their forces will be conjoined, and bring on the greatest flood and ebb. In the quadratures the sun will raise the
waters which the moon depresses, and depress the waters which the moon raises, and from the difference of their forces the smallest of all tides will follow.
And because (as experience tells us) the force of the moon is greater than that of the sun, the greatest height of the waters will happen about the third lunar
hour. Out of the syzygies and quadratures, the greatest tide, which by the single force of the moon ought to fall out at the third lunar hour, and by the single
force of the sun at the third solar hour, by the compounded forces of both must fall out in an intermediate time that aproaches nearer to the third hour of the
moon than to that of the sun. And, therefore, while the moon is passing from the syzygies to the quadratures, during which time the 3d hour of the sun
precedes the 3d hour of the moon, the greatest height of the waters will also precede the 3d hour of the moon, and that, by the greatest interval, a little after
the octants of the moon; and, by like intervals, the greatest tide will fol low the 3d lunar hour, while the moon is passing from the quadratures to the syzygies.
Thus it happens in the open sea; for in the mouths of rivers the greater tides come later to their height.

But the effects of the luminaries depend upon their distances from the earth; for when they are less distant, their effects are greater, and when more distant,
their effects are less, and that in the triplicate proportion of their apparent diameter. Therefore it is that the sun, in the winter time, being then in its perigee,
has a greater effect, and makes the tides in the syzygies something greater, and those in the quadratures something less than in the summer season; and every
month the moon, while in the perigee, raises greater tides than at the distance of 15 days before or after, when it is in its apogee. Whence it comes to pass that
two highest tides do not follow one the other in two immediately succeeding syzygies.

The effect of either luminary doth likewise depend upon its declination or distance from the equator; for if the luminary was placed at the pole, it would
constantly attract all the parts of the waters without any intension or remission of its action, and could cause no reciprocation of motion. And, therefore, as
the luminaries decline from the equator towards either pole, they will, by degrees, lose their force, and on this account will excite lesser tides in the solstitial
than in the equinoctial syzygies. But in the solstitial quadratures they will raise greater tides than in the quadratures about the equinoxes; because the force of
the moon, then situated in the equator, most exceeds the force of the sun. Therefore the greatest tides fall out in those syzygies, and the least in those
quadratures, which happen about the time of both equinoxes: and the greatest tide in the syzygies is always succeeded by the least tide in the quadratures, as
we find by experience. But, because the sun is less distant from the earth in winter than in summer, it comes to pass that the greatest and least tides more
frequently appear before than after the vernal equinox, and more frequently after than before the autumnal.

Moreover, the effects of the luminaries depend upon the latitudes of places. Let ApEP represent the earth covered
with deep waters; C its centre; P, p its poles; AE the equator; F any place without the equator; Ff the parallel of the
place; Dd the correspondent parallel on the other side of the equator; L the place of the moon three Hours before; H
the place of the earth directly under it; h the opposite place; K, k the places at 9o degrees distance; CH, Ch, the
greatest heights of the sea from the centre of the earth; and CK, Ck, its least heights: and if with the axes Hh, Kk, an
ellipsis is described, and by the revolution of that ellipsis about its longer axis Hh a spheroid HPKhpk is formed, this

spheroid will nearly represent the figure of the sea; and CF, Cf, CD, Cd, will represent the heights of the sea in the
places Ff, Dd. But farther; in the said revolution of the ellipsis any point N describes the circle NM cutting the
parallels Ff, Dd, in any places RT, and the equator AE in S; CN will represent the height of the sea in all those places
R, S, T, situated in this circle. Wherefore, in the diurnal revolution of any place F, the greatest flood will be in F, at the third hour after the appulse of the
moon to the meridian above the horizon; and afterwards the greatest ebb in Q, at the third hour after the setting of the moon; and then the greatest flood in f,

at the third hour after the appulse of the moon to the meridian under the horizon; and, lastly, the greatest ebb in Q, at the third hour after the rising of the
moon; and the latter flood in f will be less than the preceding flood in F. For the whole sea is divided into two hemispherical floods, one in the hemisphere
KHk on the north side, the other in the opposite hemisphere Khk, which we may therefore call the northern and the southern floods. These floods, being
always opposite the one to the other, come by turns to the meridians of all places, after an interval of 12 lunar hours. And seeing the northern countries
partake more of the northern flood, and the southern countries more of the southern flood, thence arise tides, alternately greater and less in all places
without the equator, in which the luminaries rise and set. But the greatest tide will happen when the moon declines towards the vertex of the place, about the
third hour after the appulse of the moon to the meridian above the horizon; and when the moon changes its declination to the other side of the equator, that
which was the greater tide will be changed into a lesser. And the greatest difference of the floods will fall out about the times of the solstices; especially if the
ascending node of the moon is about the first of Aries. So it is found by experience that the morning tides in winter exceed those of the evening, and the
evening tides in summer exceed those of the morning; at Plymouth by the height of one foot, but at Bristol by the height of 15 inches, according to the
observations of Colepress and Sturmy.

But the motions which we have been describing suffer some alteration from that force of reciprocation, which the waters, being once moved, retain a little
while by their vis insita. Whence it comes to pass that the tides may continue for some time, though the actions of the luminaries should cease. This power of
retaining the impressed motion lessens the difference of the alternate tides, and makes those tides which immediately succeed after the syzygies greater, and
those which follow next after the quadratures less. And hence it is that the alternate tides at Plymouth and Bristol do not differ much more one from the other
than by the height of a foot or 15 inches, and that the greatest tides of all at those ports are not the first but the third after the syzygies. And, besides, all the
motions are retarded in their passage through shallow channels, so that the greatest tides of all, in some straits and mouths of rivers, are the fourth or even
the fifth after the syzygies.

Farther, it may happen that the tide may be propagated from the ocean through different channels towards the same port, and may pass quicker through
some channels than through others; in which case the same tide, divided into two or more succeeding one another, may compound new motions of different
kinds. Let us suppose two equal tides flowing towards the same port from different places, the one preceding the other by 6 hours; and suppose the first tide
to happen at the third hour of the appulse of the moon to the meridian of the port. If the moon at the time of the appulse to the meridian was in the equator,
every 6 hours alternately there would arise equal floods, which, meeting with as many equal ebbs, would so balance one the other, that for that day, the water
would stagnate and remain quiet. If the moon then declined from the equator, the tides in the ocean would be alternately greater and less, as was said; and
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from thence two greater and two lesser tides would be alternately propagated towards that port. But the two greater floods would make the greatest height of
the waters to fall out in the middle time betwixt both; and the greater and lesser floods would make the waters to rise to a mean height in the middle time
between them, and in the middle time between the two lesser floods the waters would rise to their least height. Thus in the space of 24 hours the waters would
come, not twice, as commonly, but once only to their great est, and once only to their least height; and their greatest height, if the moon declined towards the
elevated pole, would happen at the 6th or 3oth hour after the appulse of the moon to the meridian; and when the moon changed its declination, this flood
would be changed into an ebb. An example of all which Dr. Halley has given us, from the observations of sea men in the port of Batsham, in the kingdom of
Tunquin, in the latitude of 20° 50’ north. In that port, on the day which follows after the passage of the moon over the equator, the waters stagnate: when the
moon declines to the north, they begin to flow and ebb, not twice, as in other ports, but once only every day: and the flood happens at the setting, and the
greatest ebb at the rising of the moon. This tide increases with the declination of the moon till the 7th or 8th day; then for the 7 or 8 days following it
decreases at the same rate as it had increased before, and ceases when the moon changes its declination, crossing over the equator to the south. After which
the flood is immediately changed into an ebb; and thenceforth the ebb happens at the setting and the flood at the rising of the moon; till the moon, again
passing the equator, changes its declination. There are two inlets to this port and the neighboring channels, one from the seas of China, between the
continent and the island of Leuconia; the other from the Indian sea, between the continent and the island of Borneo. But whether there be really two tides
propagated through the said channels, one from the Indian seain the space of 12 hours, and one from the sea of China in the space of 6 hours, which
therefore happening at the 3d and gth lunar hours, by being compounded together, produce those motions; or whether there be any other circumstances in
the state of those seas. I leave to be determined by observations on the neighbouring shores.

Thus I have explained the causes of the motions of the moon and of the sea. Now it is fit to subjoin something concerning the quantity of those motions.

Proposition xxv. Problem vi.

To find the forces with which the sun disturbs the motions of the moon.

Let S represent the sun, T the earth, P the moon, CADB the moon's orbit. In SP take SK equal to ST; and let SL

be to SK in the duplicate proportion of SK to SP: draw LM parallel to PT; and if ST or SK is supposed to represent P c % -
the accelerated force of gravity of the earth towards the sun, SL will represent the accelerative force of gravity of

the moon towards the sun. But that force is compounded of the parts SM and LM, of which the force LM, and

that part of SM which is represented by TM, disturb the motion of the moon, as we have shewn in Prop. LXVI, . T =

Book I, and its Corollaries. Forasmuch as the earth and moon are revolved about their common centre of gravity,
the motion of the earth about that centre will be also disturbed by the like forces; but we may consider the sums D
both of the forces and of the motions as in the moon, and represent the sum of the forces by the lines TM and
ML, which are analogous to thorn both. The force ML (in its mean quantity) is to the centripetal force by which the moon may be retained in its orbit

revolving about the earth at rest, at the distance PT, in the duplicate proportion of the periodic time of the moon about the earth to the periodic time of the
earth about the sun (by Cor. 17, Prop. LXVI, Book I); that is, in the duplicate proportion of 27d.7h.43" to 365d.6h.9'; or as 1000 to 178725; or as 1 to 17829/ 4.
But in the 4th Prop. of this Book we found, that, if both earth and moon were revolved about their common centre of gravity, the mean distance of the one
from the other would be nearly 602 mean semi-diameters of the earth; and the force by which the moon may be kept revolving in its orbit about the earth in
rest at the distance PT of 60V2 semi-diameters of the earth, is to the force by which it may be revolved in the same time, at the distance of 60 semi-diameters,
as 60%2 to 60: and this force is to the force of gravity with us very nearly as 1 to 60 x 60. Therefore the mean force ML is to the force of gravity on the surface

of our earth as 1 x 602 to 60 x 60 x 60 x 17829/ 400 OF a5 110 638092,6; whence by the proportion of the lines TM, ML, the force TM is also given; and these

are the forces with which the sun disturbs the motions of the moon. Q.E.I.

Proposition xxvi. Problem vii.

To find the horary increment of the area which the moon, by a radius drawn to the earth, describes in a circular orbit.

We have above shown that the area which the moon describes by a radius drawn to the
earth is proportional to the time of description, excepting in so far as the moon's motion is
disturbed by the action of the sun; and here we propose to investigate the inequality of the

moment, or horary increment of that area or motion so disturbed. To render the calculus
more easy, we shall suppose the orbit of the moon to be circular, and neglect all inequalities
but that only which is now under consideration; and, because of the immense distance of
the sun, we shall farther suppose that the lines SP and ST are parallel. By this means, the
force LM will be always reduced to its mean quantity TP, as well as the force TM to its mean

quantity 3PK. These forces (by Cor. 2 of the Laws of Motion) compose the force TL; and this
force, by letting fall the perpendicular LE upon the radius TP, is resolved into the forces TE,
EL; of which the force TE, acting constantly in the direction of the radius TP, neither
accelerates nor retards the description of the area TPC made by that radius TP; but EL,
acting on the radius TP in a perpendicular direction, accelerates or retards the description

D of the area in proportion as it accelerates or retards the moon. That acceleration of the
3PKx TK
N Let

moon, in its passage from the quadrature C to the conjunction 4, is in every moment of time as the generating accelerative force EL, that is, as
the time be represented by the mean motion of the moon, or (which comes to the same thing) by the angle CTP, or even by the arc CP. At right angles upon
CT erect CG equal to CT; and, supposing the quadrantal arc AC to be divided into an infinite number of equal parts Pp, &c., these parts may represent the like
infinite number of the equal parts of time. Let fall pk perpendicular on CT, and draw TG meeting with KP, kp produced in F and f; then will FK be equal to
TK, and Kk be to PK as Pp to Tp, that is, in a given proportion; and therefore FK x Kk, or the area FKkf, will be as %{, that is, as EL; and compounding,
the whole area GCKF will be as the sum of all the forces EL impressed upon the moon in the whole time CP; and therefore also as the velocity generated by
that sum, that is, as the acceleration of the description of the area CTP, or as the increment of the moment thereof. The force by which the moon may in its
periodic time CADB of 27d.7h.43’ be retained revolving about the earth in rest at the distance TP, would cause a body falling in the time CT to describe the
length %2CT, and at the same time to acquire a velocity equal to that with which the moon is moved in its orbit. This appears from Cor. 9, Prop, IV., Book I.
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But since Kd, drawn perpendicular on TP, is but a third part of EL, and equal to the half of TP, or ML, in the octants, the force EL in the octants, where it is
greatest, will exceed the force ML in the proportion of 3 to 2; and therefore will be to that force by which the moon in its periodic time may be retained
revolving about the earth at rest as 100 to % x 178721Y2, or 11915; and in the time CT will generate a velocity equal to 100/,,,, - parts of the velocity of the
moon; but in the time CPA will generate a greater velocity in the proportion of CA to CT or TP. Let the greatest force EL in the octants be represented by the
area FK x Kk, or by the rectangle 2TP x Pp, which is equal thereto; and the velocity which that greatest force can generate in any time CP will be to the
velocity which any other lesser force EL can generate in the same time as the rectangle ¥2TP x CP to the area KCGF; but the velocities generated in the whole
time CPA will be one to the other as the rectangle ¥2TP x CA to the triangle TCG, or as the quadrantal arc CA to the radius TP; and therefore the latter
velocity generated in the whole time will be 100/, o, - parts of the velocity of the moon. To this velocity of the moon, which is proportional to the mean moment
of the area (supposing this mean moment to be represented by the number 11915), we add and subtract the half of the other velocity; the sum 11915 + 50, or
11965, will represent the greatest moment of the area in the syzygy A; and the difference 11915 — 50, or 11865, the least moment thereof in the quadratures.
Therefore the areas which in equal times are described in the syzygies and quadratures are one to the other as 11965 to 11865. And if to the least moment
11865 we add a moment which shall be to 100, the difference of the two former moments, as the trapezium FKCG to the triangle TCG, or, which comes to the
same thing, as the square of the sine PK to the square of the radius TP (that is, as Pd to TP), the sum will represent the moment of the area when the moon is
in any intermediate place P.

But these things take place only in the hypothesis that the sun and the earth are at rest, and that the synodical revolution of the moon is finished in
27d.7h.43’. But since the moon's synodical period is really 29d.12h.41’, the increments of the moments must be enlarged in the same proportion as the time is,
that is, in the proportion of 1080853 to 1000000. Upon which account, the whole increment, which was 100/, 5, parts of the mean moment, will now become

T100/,, 4,4 Parts thereof; and therefore the moment of the area in the quadrature of the moon will be to the moment thereof in the syzygy as 11023 - 50 to

11023 + 50; or as 10973 to 11073: and to the moment thereof, when the moon is in any intermediate place P, as 10973 to 10973 + Pd; that is, supposing TP =
100.

The area, therefore, which the moon, by a radius drawn to the earth, describes in the several little equal parts of time, is nearly as the sum of the number
219,46, and the versed sine of the double distance of the moon from the nearest quadrature, considered in a circle which hath unity for its radius. Thus it is
when the variation in the octants is in its mean quantity. But if the variation there is greater or less, that versed sine must be augmented or diminished in the
same proportion.

Proposition xxvii. Problem viii.

From the horary motion of the moon to find its distance from the earth.

The area which the moon, by a radius drawn to the earth, describes in every, moment of time, is as the horary motion of the moon and the square of the
distance of the moon from the earth conjunctly. And therefore the distance of the moon from the earth is in a proportion compounded of the subduplicate
proportion of the area directly, and the subduplicate proportion of the horary motion inversely. Q.E.L.

Cor. 1. Hence the apparent diameter of the moonis given; for it is reciprocally as the distance of the moon from the earth. Let astronomers try how
accurately this rule agrees with the phaenomena.

Cor. 2. Hence also the orbit of the moon may be more exactly defined from the phaenomena than hitherto could be done.

Proposition xxviii. Problem ix.

To find the diameters of the orbit, in which, without eccentricity, the moon would move.

The curvature of the orbit which a body describes, if attracted in lines perpendicular to the orbit, is as the force of attraction directly, and the square of the
velocity inversely. I estimate the curvatures of lines compared one with another according to the evanescent proportion of the sines or tangents of their
angles of contact to equal radii, supposing those radii to be infinitely diminished. But the attraction of the moon towards the earth in the syzygies is the excess
of its gravity towards the earth above the force of the sun 2PK (see Fig. Prop. XXV), by which force the accelerative gravity of the moon towards the sun
exceeds the accelerative gravity of the earth towards the sun, or is exceeded by it. But in the quadratures that attraction is the sum of the gravity of the moon

towards the earth, and the sun's force KT, by which the moon is attracted towards the earth. And these attractions, putting N for%

178725 178725
AT2-2000 and CT2+1000, or as 178725N x CT2 - 2000AT?2 x CT, and 178725N x AT2 + 1000CT2 x AT. For if the accelerative gravity of the moon towards the
CTxN ATxN

earth be represented by the number 178725, the mean force ML, which in the quadratures is PT or TK, and draws the moon towards the earth, will be 1000,
and the mean force TM in the syzygies will be 3000; from which, if we subtract the mean force ML, there will remain 2000, the force by which the moon in

, are nearly as

the syzygies is drawn from the earth, and which we above called 2PK. But the velocity of the moon in the syzygies A and B is to its velocity in the quadratures
C and D as CT to AT, and the moment of the area, which the moon by a radius drawn to the earth describes in the syzygies, to the moment of that area
described in the quadratures conjunctly; that is, as 11073CT to 10973AT. Take this ratio twice inversely, and the former ratio once directly, and the curvature
of the orb of the moon in the syzygies will be to the curvature thereof in the quadratures as 120406729 x 178725AT2 x CT2 x N — 120406729 x 2000AT4 x CT
10 122611329 x 178725AT2 x CT2 x N + 122611329 X 1000CT4 x AT, that is, as 2151969AT x CT x N — 24081AT3 to 2191371AT x CT x N + 12261CT3.

Because the figure of the moon's orbit is unknown, let us, in its stead, assume the ellipsis DBCA, in the centre of which we suppose the earth to be situated,
and the greater axis DC to lie between the quadratures as the lesser AB between the syzygies. But since the plane of this ellipsis is revolved about the earth by
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an angular motion, and the orbit, whose curvature we now examine, should be described in a plane void of such motion we
S are to consider the figure which the moon, while it is revolved in that ellipsis, describes in this plane, that is to say, the
figure Cpa, the several points p of which are found by assuming any point P in the ellipsis, which may represent the place of
the moon, and drawing Tp equal to TP in such manner that the angle PT p may be equal to the apparent motion of the sun
from the time of the last quadrature in C; or (which comes to the same thing) that the angle CTp may be to the angle CTP as
the time of the synodic revolution of the moon to the time of the periodic revolution thereof, or as 29d.12h.44' to 27d.7h.43".
If, therefore, in this proportion we take the angle CTa to the right angle CTA, and make Ta of equal length with TA, we
shall have a the lower and C the upper apsis of this orbit Cpa. But, by computation, I find that the difference betwixt the
curvature of this orbit Cpa at the vertex a, and the curvature of a circle described about the centre T with the interval TA, is
to the difference between the curvature of the ellipsis at the vertex A, and the curvature of the same circle, in the duplicate
proportion of the angle CTP to the angle CTp; and that the curvature of the ellipsis in A is to the curvature of that circle in

the duplicate proportion of TA to TC; and the curvature of that circle to the curvature of a circle described about the centre
T with the interval TC as TC to TA; but that the curvature of this last arch is to the curvature of the ellipsis in C in the
duplicate proportion of TA to TC; and that the difference betwixt the curvature of the ellipsis in the vertex C, and the
curvature of this last circle, is to the difference betwixt the curvature of the figure Cpa, at the vertex C, and the curvature of this same last circle, in the
duplicate proportion of the angle CTp to the angle CTP; all which proportions are easily drawn from the sines of the angles of contact, and of the differences
of those angles. But, by comparing those proportions together, we find the curvature of the figure Cpa at a to be to its curvature at C as AT3 — 16824/, ,,,,,CT?

AT to CT3 + 16824/, .AT? x CT; where the number 16824/, represents the difference of the squares of the angles CTP and CTp, applied to the square of

the lesser angle CTP; or (which is all one) the difference of the squares of the times 27d.7h.43’, and 29d.12j.44’, applied to the square of the time 27d.7h.43’,
and 27d.7h.43’

Since, therefore, a represents the syzygy of the moon, and Cits quadrature, the proportion now found must be the same with that proportion of the
curvature of the moon's orb in the syzygies to the curvature thereof in the quadratures, which we found above. Therefore, in order to find the proportion of CT
to AT, let us multiply the extremes and the means, and the terms which come out, applied to AT x CT, become 2062,79CT4 - 2151969N x CT3 + 368676N x AT
x CT2 + 36342AT2 x CT2 - 362047N x AT2 x CT + 2191371N x AT3 + 4051,4AT4 = 0. Now if for the half sum N of the terms AT and CT we put 1, and x for
their half difference, then CT will be = 1 + x, and AT = 1 — x. And substituting those values in the equation, after resolving thereof, we shall find x = 0,00719;
and from thence the semi-diameter CT = 1,00719, and the semi-diameter AT = 0,99281, which numbers are nearly as 701/,,, and 691/,,. Therefore the

moon's distance from the earth in the syzygies is to its distance in the quadratures (setting aside the consideration of eccentricity) as 691/, to 701/,,; or, in

round numbers, as 69 to 70.

Proposition xxix. Problem X.

To find the variation of the moon.

This inequality is owing partly to the elliptic figure of the moon's orbit, partly to the inequality of the moments of the area which the moon by a radius
drawn to the earth describes. If the moon P revolved in the ellipsis DBCA about the earth quiescent in the centre of the ellipsis, and by the radius TP, drawn to
the earth, described the area CTP, proportional to the time of description; and the greatest semi-diameter CT of the ellipsis was to the least TA as 70 to 69; the
tangent of the angle CTP would be to the tangent of the angle of the mean motion, computed from the quadrature C, as the semi-diameter TA of the ellipsis to
its semi-diameter TC, or as 69 to 70. But the description of the area CTP, as the moon advances from the quadrature to the syzygy, ought to be in such
manner accelerated, that the moment of the area in the moon's syzygy may be to the moment thereof in its quadrature as 11073 to 10973; and that the excess
of the moment in any intermediate place P above the moment in the quadrature may be as the square of the sine of the angle CTP; which we may effect with
accuracy enough, if we diminish the tangent of the angle CTP in the subduplicate proportion of the number 10973 to the number 11073, that is, in proportion
of the number 68,6877 to the number 69. Upon which account the tangent of the angle CTP will now be to the tangent of the mean motion as 68,6877 to 70;
and the angle CTP in the octants, where the mean motion is 45°, will be found 44°27’28”, which subtracted from 45°, the angle of the mean motion, leaves
the greatest variation 32’32”. Thus it would be, if the moon, in passing from the quadrature to the syzygy, described an angle CTA of 90 degrees only. But
because of the motion of the earth, by which the sun is apparently transferred in consequentia, the moon, before it overtakes the sun, describes an angle CT,
greater than a right angle, in the proportion of the time of the synodic revolution of the moon to the time of its periodic revolution, that is, in the proportion
of 29d.12h.44’ to 27d.7h.43’. Whence it comes to pass that all the angles about the centre T are dilated in the same proportion; and the greatest variation,
which otherwise would be but 32’ 32”, now augmented in the said proportion, becomes 35’ 10”.

And this is its magnitude in the mean distance of the sun from the earth, neglecting the differences which may arise from the curvature of the orbis
magnus, and the stronger action of the sun upon the moon when horned and new, than when gibbous and full. In other distances of the sun from the earth,
the greatest variation is in a proportion compounded of the duplicate proportion of the time of the synodic revolution of the moon (the time of the year being
given) directly, and the triplicate proportion of the distance of the sun from the earth inversely. And, therefore, in the apogee of the sun, the greatest variation
is 33'14”, and in its perigee 37’11”, if the eccentricity of the sun is to the transverse semi-diameter of the orbis magnus as 1615/ ¢ to 1000.

Hitherto we have investigated the variation in an orb not eccentric, in which, to wit, the moon in its octants is always in its mean distance from the earth. If
the moon, on account of its eccentricity, is more or less removed from the earth than if placed in this orb, the variation may be something greater, or
something less, than according to this rule. But I leave the excess or defect to the determination of astronomers from the phenomena.

Proposition xxx. Problem xi.

To find the horary motion of the nodes of the moon, in a circular orbit.

Let S represent the sun, T the earth, P the moon, NPn the orbit of the moon, Npn the orthographic projection of the orbit upon the plane of the ecliptic: N, n
the nodes, nTNm the line of the nodes produced indefinitely; PI, PK perpendiculars upon the lines ST, Qq; Pp a perpendicular upon the plane of the ecliptic;
A, B the moon's syzygies in the plane of the ecliptic; AZ a perpendicular let fall upon Nn, the line of the nodes; Q, g the quadratures of the moon in the plane
of the ecliptic, and pK a perpendicular on the line Qq lying between the quadratures. The force of the sun to disturb the motion of the moon (by Prop. XXV) is
twofold, one proportional to the line LM, the other to the line MT, in the scheme of that Proposition; and the moon by the former force is drawn towards the

253/296



earth, by the latter towards the sun, in a direction parallelmto the right line ST joining the earth and the sun. The former force LM acts in the direction of the

r

plane of the moon's orbit, and therefore makes no change upon the situation thereof, and is upon that account to be neglected; the latter force MT, by which
the plane of the moon's orbit is disturbed, is the same with the force 3PK or 3IT. And this force (by Prop. XXV) is to the force by which the moon may, in its
periodic time, be uniformly revolved in a circle about the earth at rest, as 31T to the radius of the circle multiplied by the number 178,725, or as IT to the
radius there of multiplied by 59,575. But in this calculus, and all that follows, I consider all the lines drawn from the moon to the sun as parallel to the line
which joins the earth and the sun; because what inclination there is almost as much diminishes all effects in some cases as it augments them in others; and
we are now inquiring after the mean motions of the nodes, neglecting such niceties as are of no moment, and would only serve to render the calculus more
perplexed.

Now suppose PM to represent an arc which the moon describes in the least moment of time, and ML a little line, the half of which the moon, by the impulse
of the said force 3IT, would describe in the same time; and joining PL, MP, let them be produced to m and [, where they cut the plane of the ecliptic, and
upon Tm let fall the perpendicular PH. Now, since the right line ML is parallel to the plane of the ecliptic, and therefore can never meet with the right line ml
which lies in that plane, and yet both those right lines lie in one common plane LMPml, they will be parallel, and upon that account the triangles LMP, ImP
will be similar. And seeing MPm lies in the plane of the orbit, in which the moon did move while in the place P, the point m will fall upon the line Nn, which
passes through the nodes N, n, of that orbit. And because the force by which the half of the little line LM is generated, if the whole had been together, and at
once impressed in the point P, would have generated that whole line, and caused the moon to move in the arc whose chord is LP; that is to say, would have
transferred the moon from the plane MPmT into the plane LPIT; therefore the angular motion of the nodes generated by that force will be equal to the angle
mTl. But ml is to mP as ML to MP; and since MP, because of the time given, is also given, ml will be as the rectangle ML x mP, that is, as the rectangle IT x

. . q q ml ITxPm ITxPH,
mP. And if Tml is a right angle, the angle mTI will be as Tm and therefore as Tm ™

and, therefore, because TP is given, as IT x PH. But if the angle Tml or STN is oblique, the angle mTI will be yet less, in proportion of the sine of the angle
STN to the radius, or AZ to AT. And therefore the velocity of the nodes is as IT x PH x AZ, or as the solid content of the sines of the three angles TPI, PTN, and
STN.

that is (because Tm and mP, TP and PH are proportional), as

If these are right angles, as happens when the nodes are in the quadratures, and the moon in the syzygy, the little line ml will be removed to an infinite
distance, and the angle mTI will become equal to the angle mPL. But in this case the angle mP! is to the angle PTM, which the moon in the same time by its
apparent motion describes about the earth, as 1 to 59,575. For the angle mPl is equal to the angle LPM, that is, to the angle of the moon's deflexion from a
rectilinear path; which angle, if the gravity of the moon should have then ceased, the said force of the sun 3IT would by itself have generated in that given
time; and the angle PTM is equal to the angle of the moon's deflexion from a rectilinear path; which angle, if the force of the sun 3IT should have then ceased,
the force alone by which the moon is retained in its orbit would have generated in the same time. And these forces (as we have above shewn) are the one to the
other as 1 to 59,575. Since, therefore, the mean horary motion of the moon (in respect of the fixed stars) is 32’ 56” 27" 12V/2iv, the horary motion of the node
in this case will be 33” 10” 33iv.12v. But in other cases the horary motion will be to 33” 10” 33iv.12v, as the solid content of the sines of the three angles TPI,
PTN, and STN (or of the distances of the moon from the quadrature, of the moon from the node, and of the node from the sun) to the cube of the radius. And
as often as the sine of any angle is changed from positive to negative, and from negative to positive, so often must the regressive be changed into a
progressive, and the progressive into a regressive motion. Whence it comes to pass that the nodes are progressive as often as the moon happens to be placed
between either quadrature, and the node nearest to that quadrature. In other cases they are regressive, and by the excess of the regress above the progress,
they are monthly transferred in antecedentia.

Cor. 1. Hence if from P and M, the extreme points of a least arc PM, on the line Qq joining the quadratures we let fall the perpendiculars PK, Mk, and
produce the same till they cut the line of the nodes Nn in D and d, the horary motion of the nodes will be as the area MPDd, and the square of the line AZ
conjunctly. For let PK, PH, and AZ, be the three said sines, viz., PX the sine of the distance of the moon from the quadrature, PH the sine of the distance of

iy}

g .
the moon from the node, and AZ the sine of the distance of the node from the sun; and the velocity of the node will be as the solid content of PK x PH x AZ.
But PT is to PK as PM to Kk; and, therefore, because PT and PM are given, Kk will be as PK. Likewise AT is to PD as AZ to PH, and therefore PH is as the
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rectangle PD x AZ; and, by compounding those proportions, PK x PH is as the solid content Kk x PD x AZ, and PK x PH x AZ as Kk x PD x AZ2; that is, as the
area PDdM and AZ2 conjunctly. Q.E.D.

Cor. 2. In any given position of the nodes their mean horary motion is half their horary motion in the moon's syzygies; and therefore is to 16” 35" 16iv.36v.
as the square of the sine of the distance of the nodes from the syzygies to the square of the radius, or as AZ2 to AT2. For if the moon, by an uniform motion,
describes the semi-circle QAq, the sum of all the areas PDdM, during the time of the moon's passage from Q to M, will make up the area QMdE, terminating
at the tangent QE of the circle; and by the time that the moon has arrived at the point n, that sum will make up the whole area EQAn described by the line PD:
but when the moon proceeds from n to g, the line PD will fall without the circle, and describe the area nge, terminating at the tangent ge of the circle, which
area, because the nodes were before regressive, but are now progressive, must be subducted from the former area, and, being itself equal to the area QEN,
will leave the semi-circle NQAn. While, therefore, the moon describes a semi-circle, the sum of all the areas PDdM will be the area of that semi-circle; and
while the moon describes a complete circle, the sum of those areas will be the area of the whole circle. But the area PDdM, when the moon is in the syzygies, is
the rectangle of the arc PM into the radius PT; and the sum of all the areas, every one equal to this area, in the time that the moon describes a complete circle,
is the rectangle of the whole circumference into the radius of the circle; and this rectangle, being double the area of the circle, will be double the quantity of
the former sum. If, therefore, the nodes went on with that velocity uniformly continued which they acquire in the moon's syzygies, they would describe a
space double of that which they describe in fact; and, therefore, the mean motion, by which, if uniformly continued, they would describe the same space with
that which they do in fact describe by an unequal motion, is but one-half of that motion which they are possessed of in the moon's syzygies. Wherefore since
their greatest horary motion, if the nodes are in the quadratures, is 33” 10” 33iv, their mean horary motion in this case will be 16” 35” 16iv.36v. And seeing the
horary motion of the nodes is every where as AZ2 and the area PDdM conjunctly, and, therefore, in the moon's syzygies, the horary motion of the nodes is as
AZ2 and the area PDdM conjunctly, that is (because the area PDdM described in the syzygies is given), as AZ2, therefore the mean motion also will be as AZ2;
and, therefore, when the nodes are without the quadratures, this motion will be to 16” 35" 16iv.36v. as AZ2 to AT2. Q.E.D.

Proposition xxxi. Problem xii.

To find the horary motion of the nodes of the moon, in an, elliptic orbit.

Let Qpmagq represent an ellipsis described with the greater axis Qg, am the lesser axis ab; QA¢B a circle circumscribed; T the earth in the common centre of
both; S the sun; p the moon moving in this ellipsis; and pm an arc which it describes in the least moment of time; N and n the nodes joined by the line Nn; pK

and mk perpendiculars upon the axis Qg, produced both ways till they meet the circle in P and M, and the line of the nodes in D and d. And if the moon, by a
radius drawn to the earth, describes an area proport